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Abstract

Moduli of Computation

by

Peter Michael Gerdes

Doctor of Philosophy in Logic and the Methodology of Science

University of California, Berkeley

Professor Leo Harrington, Chair

The relation between a functions rate of growth and it’s computational properties is a

traditional, and well studied, problem in computability theory. However, this relationship

has been almost exclusively studied in a somewhat piecemeal fashion by fixing some notion

of a fast growing function and classifying the degrees of those functions. Making use of the

notion of a modulus of computation, a measure of the rate of growth sufficent to compute a

given set, as introduced by Groszek and Slaman we explore the connection between rate of

growth and Turing degree in a more general setting. In particular we do this by focusing on

two particular types of moduli: the self-moduli (those functions computable from any faster

growing function) and the uniform moduli (functions witnessing a rate of growth sufficent

to guarantee uniform computation by larger functions). After exploring the behavior of

these objects we characterize the uniform self-moduli and extend this characterization to

sets with uniform moduli and in so doing answer a question of Groszek and Slaman. Finally

we demonstrate that there are examples of self-moduli that are very non-uniform.

Professor Leo Harrington
Dissertation Committee Chair
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Chapter 

Background

Before we present the results of our investigations into the computational proper-

ties of fast growin functions – or even define the notion of a moduli of computation – we

first must explain our notation and review some necessery background. Limitations of space

and time prevent us from offering a comprehensive introduction to computability theory so

we refer the reader to [] or [] for a primer on classical computability theory and will

assume they are familiar with the basic results on arithmetic sets and functions. Some pass-

ing familiarity with hyperarithmetic theory (for instance the results in the first chapter or

two of []) and the use of arithmetic forcing in computability theory (such as is covered in

[] will also be helpful but we will endeavor to give a quick review of the relevant results in

these areas to allow someone with only a background in the classical computability theory

to follow our arguments. First, however, we document the notation we will use for standard

concepts in mathematics and computability theory.

. Notation

.. Strings, Sets & Functions

We use the following standard notation for dealing with functions and sets.

Conventions .. (Functions, Sets & Variables).

. P (S) is the power set of S, XY is the set of total functions from Y to X and (X∪↑ )Y

is the set of partial functions from Y to X.
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. ω is the natural numbers, ωω is the baire space and 2ω the cantor space. We identify

integers with the corresponding ordinals, e.g. n = {m|m < n} and identify members

of 2ω with sets of integers via their characteristic functions. Functions are identified

with sets of ordered pairs.

. We write f(x)↓ to denote that the function f is defined at x and f(x)↑ or f(x)X ↓ to

indicate that f(x) is undefined.

. Unless stated otherwise σ, τ, ν range over 2<ω or ω<ω, f, g, h range over ωω and ε, δ

range over ω<ω ∪ (ω∪↑ )ω or (2∪↑ )<ω ∪ (2∪↑ )ω. e, i, j, k, n,m, x, y, z range over ω and

capital roman letters range over sets of integers.

We adopt the following standard definitions and conventions for strings.

Conventions .. (Strings & Coding).

. A string is a member of ω<ω identified with the integers via a canonical bijection. A

binary string is a string whose range is contained in 2 = {0, 1}. An infinite string is

a member of ωω.

. ∅ is the empty string. 〈x0, x1, x2, . . . , xk〉 denotes the string mapping 0 to x0, 1 to x1

and so forth.

. When we need to explicitly indicate that we want to understand a string σ (or any

other coded object) as an integer we write pσq.

. Conversely given an integer s we denote the string with code s by s? and use (s?)k to

denote s? applied to k.

. We select a canonical bijection between ω × ω and ω and use the notation 〈〈x, y〉〉 to

denote the image of the ordered pair (x, y) under this bijection.

. The length of σ is denoted |σ|.

. The concatenation of σ and τ is denoted σ̂τ .
. We write σ | τ if σ and τ lack a common extension and σ - τ if they have a common

extension.

. If X,Y ⊂ ω then X ⊕ Y = {z|(z = 2x ∧ x ∈ X) ∨ (z = 2y + 1 ∧ y ∈ Y )}.
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. If Xi ⊂ ω, i ∈ ω then
⊕

i∈ωXi = {〈〈i, x〉〉|x ∈ Xi}.

. If A ⊂ ω A[n] = An where A =
⊕

n∈ω An.

. If f, g ∈ ωω then f ⊕ g = h ∈ ωω where h(2x) = f(x) ∧ h(2x+ 1) = g(x).

. If fi ∈ ωω, i ∈ ω then
⊕

i∈ω fi = f ∈ ωω where f(〈〈i, x〉〉) = fi(x).

. If f ∈ ωω then f [n] = fn where f =
⊕

i∈ω fi.

. If f ∈ ωω and X ⊂ ω then f ⊕X = Gf ⊕X where Gf is the graph of f .

We also extend the standard definition of majorization to include partial functions

and introduce some nonstandard notation that we will be making extensive use of in the

remainder of this work.

Definition ... Given ε, δ ∈ (ω∪↑ )ω we say εmajorizes (dominates) δ, denoted ε� δ

(ε�∗ δ), if for every x (for all but finitely many x):

x ∈ dom ε ∩ dom δ =⇒ ε(x) ≥ δ(x)

Also it will be convenient to take our coding functions to have a few extra proper-

ties. In particular we assume that 〈〈0, 0〉〉 = 0 and that our coding function for ω<ω satisfies

the conditions given in the following lemma.

Lemma ... There is a primitive recursive bijection taking σ ∈ ω<ω to pσq ∈ ω that

satisfies:

. σ ⊂ σ′ =⇒ pσq < pσ′q

. domσ ⊇ dom τ ∧ σ � τ =⇒ pσq > pτq

Proof. If we were coding finite partial functions we could satisfy these conditions by encoding

the finite partial function σ∗ ∈ (ω∪↑ )<ω in the following manner.

pσ∗q = 2y0+1 · 3y1+1 · . . . · pyk+1
k

yk =

σ
∗(k) if σ∗(k)↓

−1 if σ∗(k)↑

To build a bijective coding function for ω<ω we merely list off finite partial functions in

order of their code and map σ ∈ ω<ω to k if it is the k-th member of ω<ω to appear in our

list of finite partial functions.
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.. Computability

Conventions ...

. Given some predicate ϕ(x) we denote the operation returning the least integer y

satisfying ϕ(x) by µy (ϕ(y)). If no solution to ϕ(x) exists then µy (ϕ(y)) ↑.

. Variables of the form d˜ range over Turing degrees and X˜ denotes the Turing degree

of the set X.

. 0˜ denotes the degree of computable sets.

. X ′ denotes the jump of a set X and d˜′ denotes the degree of X ′ for X ∈ d˜.
. If f is a partial computable function then f(x)↓s denotes that f(x) converges in at

most s steps and f(x)X ↓s denotes that it does not.

. Φe is the e-th partial computable functional where Φe(X;x) is the result of running

the e-th algorithm with input x on the oracle X.

. We denote the primitive recursive function computing s stages of Φe(X;x) by Φe,s(X;x)

and define

Φe,s(X;x) =

Φe(X;x) if Φe(X;x′)↓s

↑ otherwise

. We define Φ2
e to be the e-th 0, 1 valued partial computable functional defined so:

Φ2
e(X;x) =


0 if Φe(X;x)↓= 0

1 if Φe(X;x)↓ 6= 0

↑ if Φe(X;x)↑

. We use Φe(g) where g ∈ ωω to denote Φe(Gg) where Gg is the graph of g. We adopt

the same convention for Φ2
e(g).

. WX
e = {x|Φe(X;x)↓ } is the e-th set computably enumerable in X. We abbreviate

W∅e by We.

. Two computations Φe(X;x),Φi(Y ; y) are strongly equal (alternatively Kleene equal),

denoted Φe(X;x) w Φi(Y ; y) if (Φe(X;x)↑∧Φi(Y ; y)↑ ) ∨ Φe(X;x)↓= Φi(Y ; y)↓.





. Φe(X) w Φi(Y ) ⇐⇒ (∀z) (Φe(X; z) w Φi(Y ; z))

. The use of Φe,s(Y ;x) is denoted u(Φe(Y ;x), s) and refers to the largest location in

Y examined during s steps of the computation. We stipulate u(Φe(Y ;x), s) ≤ s and

define the use of Φe(Y ;x) by

u(Φe(Y ;x)) = max
s

u(Φe(Y ;x), s)

. An index for a function f (a set S) relative to X is an integer e such that f w Φe(X)

(S =WX
e ). An index simplicitor is an index relative to ∅.

. A sequence 〈zk〉k∈ω is computable if the function taking k to zk is computable.

. Trees

We adopt the following fairly standard conventions to describe trees.

Conventions ...

• A tree is a subset of ω<ω viewed as a poset under ⊆ possessing a unique minimal

element.

• A tree T is downward closed or closed under initial segments if σ ∈ T and τ ⊆ σ

then τ ∈ T . All trees we use in this work are downward closed unless we explicitly

indicate otherwise.

• A branch through T is a maximal linearly ordered subset of T . When the tree

ordering is given by ⊆ we identify branches with the union of their members.

• An infinite branch is a branch with height at least ω. We denote the set of infinite

branches through T by [T ].

• We denote the set of σ ∈ T that extend to an infinite branch by T∞.

• A terminal node is a maximal element of (T,<T ).

• The subtree of T extending σ ∈ T is the denoted T/(σ) = {τ ∈ T |σ ≤ τ} and forms a

tree under the inherited order.

• A tree is perfect if every σ ∈ T is extended by some τ, τ ′ with τ | τ ′.
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• An tree is computable just if T , viewed as a set of integers, is computable.

During our constructions we will often need to ensure something happens along

every infinite branch of T that extends the node σ. With this in mind we make the following

definition.

Definition ... Given an ω-tree T say a set of nodes C is a cover of σ (on T ) if every

infinite branch of T extending σ extends an element of C.

.. Forcing

We refer the interested reader to Odifreddi [, ] for complete coverage whose

relation 
T is our relation 
∗T and relation 
wT is our relation 
T . While Odifreddi defines

(strong) Cohen forcing (forcing using arbitrary conditions in 2<ω) and presents (strong)

local forcing (forcing using conditions from some tree) as a minor modification to this

definition we will be interested only in local forcing so define strong local forcing as the

primary notion. Additionally we deviate from Odifreddi by defining forcing in ω<ω instead

of 2<ω.

When working with forcing we assume that that universal quantifier ∀x is merely

shorthand for ¬∃x¬ and that our formulas are in prenex normal form. Extending the

definition to other formulas is straightforward.

Definition ... Given T ⊂ ω<ω, a perfect tree, we define the strong forcing relation

σ 
∗T ψ for σ ∈ T and a formula ψ containing the free function variable g by induction on

the complexity of ψ.

ψ ∈ ∆0
1 ⇒ σ 
∗T ψ ↔ σ |= ψ

ψ = ∃xϕ(x)⇒ σ 
∗T ψ ↔ (∃x) [σ 
∗T ϕ(x)]

ψ = ¬ϕ⇒ σ 
∗T ψ ↔ (∀τ ⊃ σ, τ ∈ T ) (¬τ 
∗T ϕ)

Where we understand σ |= ψ to hold if ψ can be seen to hold when g is replaced by σ

without reference any location at which σ is undefined.

When the tree T is just ω<ω we drop the subscript. We now briefly remind the

reader of standard definitions used to describe forcing.

Definitions ...





. For g ∈ [T ], g 
∗T ϕ ⇐⇒ (∃n) (g�n
∗T ϕ).

. g ∈ [T ] is κ-generic if for every ϕ ∈ Σ0
n either g 
∗T ϕ or g 
∗T ϕ.

. σ forces ϕ ∈ Σ0
n denoted σ 
T ϕ if for every κ-generic g ⊃ σ =⇒ g 
∗T ϕ. Note that

σ 
∗ ϕ entails σ 
 ϕ.

We present the fundamental properties of the forcing relation without proof.

Lemma ... g is n-generic if and only if g forces the same Σ0
n formulas that it makes

true.

Lemma ... For every formula ϕ and string σ ∈ T there is some σ′ ∈ T, σ′ ⊃ σ with

either σ′ 
∗ ϕ or σ′ 
∗ ¬ϕ.

. Hyperarithmetic Theory

.. Ordinal Notations

The theory of computable notations for ordinals is too complex to allow a full

presentation here so we present a system of ordinal notations similar to the one defined

by Soare in [] and remind the reader of several important results but refer them to the

literature [, , , ] for a complete treatment.

Definition ... Using transfinite induction define the integer a = 〈〈u, v〉〉 to be a notation

for the ordinal κ if

. κ = 0, u = 0 and v = 0.

. κ = α+O 1, u = 1 and v is a notation for α.

. κ = lim
n→∞

λn for a strictly increasing sequence λn, u = 2 and for each n Φv(∅;n) is a

notation for λn.

A slightly more involved inductive argument is required to demonstrate that there

is a computable binary operation +O that implements ordinal addition in a computable

fashion on notations but we leave the proof to the reader. To ease our use of ordinal

notations we adopt the following abbreviations.

Notation ...
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• If κ is as in part  of definition .. we write ~λκn to denote λn.

• We denote the set of all ordinal notations by Ō.

From this point on we abuse notation and, when there is no danger of confusion,

cease to distinguish between the notations and the ordinals they represent. To facilitate

this identification we use the variables α, β, γ and λ for ordinal notations when we wish

to manipulate them as if they were the ordinals themselves. Thus we will simple write

α +O β instead of α +O β when we add notations. Similarly we will often simply write

κ = limn→∞ λn and omit saying that κ is the effective limit of λn when there is no danger

of confusion. When clarity requires we distinguish between the notation and the ordinal we

adopt the notation:

Notation ...

• If α is an ordinal notation then |α|O is the ordinal it represents.

• If α is an ordinal notation we write pαq to emphasize that we understand α as an

integer in that context.

• We allow numerals to represent both the integer and the corresponding unique ordinal

notation depending on the context n ∈ ω from the integer we denote the notation

Unfortunately we can’t entirely forget about the distinction between ordinals and

their notations since there are many notations for every ordinal past ω. We cannot, there-

fore, induce a well-ordering on the set of notations. However, we can introduce an ordering

<O on notations which is a well-ordering below any particular notation. Intuitively a no-

tation α is below a notation a′ when a appears somewhere along the sequence constructing

a′. We formalize this as follows.

Definition ... The relation <O is the smallest transitive anti-reflexive relation on no-

tations satisfying the conditions:

. For every ordinal notation κ, κ <O κ+O 1.

. If the notation κ is defined by the effective proper limit lim
n→∞

λn as in definition ..

part  then for every n λn <O κ.
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This system provides a (non-unique) notation for every ordinal below ωck1 , the first

non-computable ordinal. Standard results [] assure us that this is the best we can hope

to achieve in an effective system. We remark without proof that given a notation κ the

set of notations Ō<β = {β|β <O κ} is a computably enumerable set well-ordered by <O .

Though we could not give an effective system of unique notations there is a canonical Π1
1

set O of unique notations where a Π1
1 set is defined in the following manner.

Definition ... A set S ⊂ ω is in Π1
n if there is some formula ψ defining S so that for

some arithmetic formula ϕ

ψ = ∀X1∃X2 . . .︸ ︷︷ ︸
n

ϕ(X1, X2, . . . , Xk)

S in in Σ1
n if insted

ψ = ∃X1∀X2 . . .︸ ︷︷ ︸
n

ϕ(X1, X2, . . . , Xk)

Finally S is in ∆1
n if if is in both Σ1

n and Π1
n

Having a computable means to represent ordinals beyond ω now gives us a way

to extend familiar operations from the arithmetic hierarchy to the transfinite. For instance

we can now define the α iterate of the Turing jump for any ordinal α below ωck1 .

Definition ... Given X ⊆ ω and an ordinal notation κ define X(κ) inductively as

follows.

X(κ) =


X if κ = 0

(X(α))′ if κ = α+O 1⊕
n∈ω

X(~λκn) if κ = lim
n→∞

λn

As is frequently the case when dealing with ordinal notations X(κ) ≡T X(κ′) when-

ever |κ|O = |κ′|O [, , ]. Thus we really have defined a notion of the α jump for every

ordinal α below ωck1 .

Definition ... A set S is hyperarithmetic if S ≤T 0(α) for some notation α.

We are now able to state (without proof) the famous result characterizing the

hyperarithmetic sets.

Theorem ... A set is hyperarithmetic if and only if it is ∆1
1.
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.. REA sets

While the jump operator provides one means of iteratively building sets in the

hyperarithmetic hierarchy this yields only a fairly limited class of sets. Jockusch and Shore

[, ] defined a much richer class of sets, the REA sets, by generalizing the idea of the

Turing jump to that of a pseudo-jump operator and then effectively iterating these operators

transfinitely many times. An in depth treatment of REA sets and operators can be found

in [, ] but we briefly review the concepts we will need.

Definition ... A pseudo-jump operator Je is functional acting on P (ω) with an action

given by Je (X) = X ⊕WX
e .

Definition ... For every notation κ we define theκ-REA operator J κe to satisfy.

. J 0
e (X) = X.

. If κ = α+O 1 then

J κe (X) =

Ji (J αe (X)) if Φe(∅;α)↓= i

∅ if Φe(∅;α)↑

. If κ a limit notation then J κe (X) =
⊕

n∈ω J
βn
c (X) where 〈βn〉n∈ω is a (uniformly

chosen from κ canonical) computable enumeration of the notations below κ.

We define indexes for REA operators in the natural manner.

Definition ... We define the REA operator J ∗r with REA index r to be J κe where

r = 〈〈κ, e〉〉. We call an REA operator with index 〈〈β, j〉〉 a β-REA operator.

Definition ... S is an REA set with index c if S = J ∗c (∅). If c = 〈〈α, j〉〉 we also say

that S is an α-REA set.

.. Hyperarithmetic Formula

We adopt a slightly unusual, though still fairly standard, approach to the hyper-

arithmetic sets. Instead of defining the hyperarithmetic sets as the closure of the arithmetic

sets under effective operations (e.g. jumps and effective unions) we define a computable

fragment of Lω1,ω which we denote by CLω1,ω and define the hyperarithmetic sets to be
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those sets definable in this language. The approaches are straightforwardly equivalent but

the infinitary formula we develop will be a useful way to organize some constructions. How-

ever, our treatment is somewhat cursory so we refer the reader to the literature [, , , ]

for a formal definition of computable Σα and Πα formula. Here we simply take the exis-

tence of an acceptable system of indexes for these formula for granted and offer the following

definition sketch.

Definition ...

• A Σ0
0(X) or Π0

0 (X) formula is a finite formula in the language of arithmetic with the

addition of a set constant X containing no quantifiers.

• A Σ0
α+1(X) formula is a formula of the form ∃xϕ where ϕ ∈ Π0

α (X).

• A Π0
α+1 (X) formula is a formula of the form ∀xϕ where ϕ ∈ Σ0

α(X).

• A Σ0
λ(X) formula for λ a limit is of the form

∨∨
i∈ω ϕi where ϕi is a computable sequence

of Π0
α (X) formulas for α <O λ and

∨∨
is understood as an infinite disjunction.

• A Π0
λ (X) formula for λ a limit is of the form

∧∧
i∈ω ϕi where ϕi is a computable se-

quence of Σ0
α(X) formulas for α <O λ and

∧∧
is understood as an infinite conjunction.

• CLω1,ω is the collection of Σ0
κ(X) formulas for κ <O ωck1 .

Rather than defining a new notation for computable Σα/Πα formula we abuse

notation and write ϕ ∈ Σα/ ∈ Πα whenever ϕ is equivalent to a computable Σα/Πα. When

we need to make it clear that a given formula ϕ is literally a computable Σα or Π0
α formula

rather than merely equivalent to one we will say that ϕ is syntactically Σ0
α/Π

0
α. We define

the Σ0
α and Π0

α sets in terms of the formulas thusly.

Definition ... Given a set S ⊆ ω we define

S ∈ Σ0
α(X) ⇐⇒

(
∃ϕ ∈ Σ0

α(X)
)

(∀y ∈ ω) (y ∈ S ⇐⇒ ϕ(y))

S ∈ Π0
α (X) ⇐⇒

(
∃ϕ ∈ Π0

α (X)
)

(∀y ∈ ω) (y ∈ S ⇐⇒ ϕ(y))

S ∈ ∆0
α(X) ⇐⇒ S ∈ Σ0

α(X) ∧ S ∈ Π0
α (X)

Definition ... A Σ0
α(X) /Π0

α (X) index for a set S is an index for a Σ0
α(X) /Π0

α (X)

formula defining S as in ... A ∆0
α(X) index for S is a pair 〈〈e1, e2〉〉 with e1 a Σ0

α(X)
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index for S and e2 a Σ0
α(X) index for ω \S. An index for a total function is simply an index

for it’s graph.

The following two results are well known extensions of results for arithmetic sen-

tences which we present without proof.

Proposition ... A set S is in Σ0
1+α if and only if S =W0(α)

e for some e. Furthermore

there is a computable bijection between Σ0
1+α indexes and indexes for computably enumerable

sets in 0(α).

Lemma ... Suppose ϕ,ψ ∈ Σ0
κ(Y ) or Π0

κ (Y ) then both ϕ∧ψ and ϕ∨ψ are equivalent

to formulas in Σ0
κ(Y ) /Π0

κ (Y ). Furthermore if ϕ ∈ Σ0
κ(Y ) then ∃xϕ is equivalent to a Σ0

κ(Y )

formula and likewise if ϕ ∈ Π0
κ (Y ) then ∀xϕ is equivalent to a Π0

κ (T ) formula. Moreover

indexes for the resultant formulas can be found effectively.

To prove results about Σ0
α and Π0

α relations will commonly make use of transfinite

induction and in these arguments it will be important that we can always express bounded

existential quantification without increasing the complexity of the formula.

Lemma ... If ψ ∈ Π0
κ (Y ) then for every k there is a formula ϕk ∈ Π0

κ (Y ) so that

ϕk ↔ (∃x < k)ψ(x) and an index for ϕk is uniformly computable from an index for ψ.

Proof.

Case : κ <O ω

Follows trivially by transformation to predicate normal form.

Case : κ = α+O 1, α ≥O ω
For some ψ̂ ∈ Σ0

α(Y ).

(∃x < k)ψ(x) ⇐⇒ (∃x < k) (∀y) ψ̂(x, y)

Trivially then

(∃x < k)ψ(x) =⇒
(
∀ζ ∈ ωk

)
(∃x < k) ψ̂(x, ζ(x))

For the converse note that

¬ (∃x < k) (∀y) ψ̂(x, y) =⇒ (∀x < k) (∃y)¬ψ̂(x, y)

This in turn implies that for some function ζ ∈ ωk(
∃ζ ∈ ωk

)
(∀x < k)¬ψ̂(x, ζx)
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Hence

(∃x < k)ψ(x) ⇐⇒
(
∀ζ ∈ ωk

)
(∃x < k) ψ̂(x, ζ(x))

By standard arguments this final formula is equivalent to a formula in Π0
κ (Y )

and clearly every step we took was effective.

Case : κ = lim
n→∞

λn, a proper limit

For some sequence of formulas ψ̂i ∈ Π0
λn

(Y ) we have

(∃x < k)ψ(x) ⇐⇒ (∃x < k)
ω∧∧
y=0

ψ̂i(x)

Now let

ψ∗pσq =
∨
m<k

∧
z∈<|σ|

ψ̂σ(z)(m)

ψ′ =
∞∧∧
n=0

ψ∗n

By lemma .. ψ′ is in Π0
κ (T ) and the construction of ψ′ is obviously effective.

Hence we need only prove that ψ′ is equivalent to (∃x < k)ψ(x) to finish the

lemma.

Suppose ψ(x) holds for some x < k then so does ψ′ since each ψ∗n has a disjunct

consisting only of formulas of the form ψ̂i(x). Conversely if ψ(x) fails to hold

then for each x < k there is some formula ψ̂ix such that ψ̂ix(x) doesn’t hold.

But then ψ∗〈i0,...,ik−1〉 must also fail and thus so must ψ′

Since we will make extensive use of Π0
α singletons we also observe the following

lemma.

Lemma ... There is a computable bijection taking the index for a Π0
α formula ϕ(X)

to the index for a Π0
α set TX ⊂ 2<ω such that for every X ∈ P (ω) X ∈ [T ] ⇐⇒ ϕ(X).

The same result holds if we replace 2<ω with ω<ω and allow X to range over ωω.

Proof. We demonstrate that given a Π0
α definition of a tree T we can effectively go to

a formula ϕ(X) and vice versa. The bijection follows from a standard back and forth

argument.
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Given a Π0
α set T ⊂ 2<ω then for some ψ ∈ Π0

α

σ ∈ T ⇐⇒ ψ(σ)

Hence

X ∈ [T ] ⇐⇒ (∀l)ψ(X�l )

By lemma .. this formula is in Π0
α. Conversely given a formula ϕ(X) ∈ Π0

α we assume,

without loss of generality, that the only atomic formulas in ϕ are of the form X(t) = t′

where t, t′ are terms. We define a Π0
α formula ψ(σ) by replacing every atomic formula of the

form X(t) = t′ appearing in ϕ with the formula σ(t) = t′ ∨ |σ| < t+ 1. Clearly ψ defines a

Π0
α tree whose infinite paths are just the solutions to ϕ. The effectiveness of the argument

is evident and the result for ωω follows by a similar argument.
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Chapter 

Degrees and Their Moduli

. Historical Background

One traditional area of interest in computability theory is the relation between

the rate of growth of a (total) function (identified with it’s graph) and it’s Turing degree

[, , ]. Originally motivated by Post’s program [] this topic has long since become a

subject of study in it’s own right and continues to be an active area of exploration to this

day []. While a fair amount of work has been done in this area most of it shares the same

basic form: classify the degrees of functions which are ‘large’ for some fixed notion of large

(usually a dominating property relative to some class of functions). This approach has been

very productive but it limits the sort of questions that can be addressed. While results

like Martin’s identification of the functions dominating all total computable functions with

the high degrees [] show us that functions with a sufficiently high rate of growth have

substantial computational power, i.e., can compute complex sets, this approach is ill-suited

to exploring the general relation between a set’s computational properties and the rates of

growth sufficient to compute that set.

However, not all work on rate of growth has been in this style. Jockusch and

Soare introduced a fascinating alternative approach in [] by introducing the notion of a

recursively encodable set.

Definition ... A set A is recursively encodable if for every infinite set X ⊂ ω there is

a set Y ⊂ X with Y ≥T A.

Intuitively if no matter how sparse one makes X or how trickily it’s defined there
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is always a subset of X computing A this must occur for a reason. In particular A must

be computable by all sufficiently sparse sets or equivalently by all sufficiently fast growing

functions. We won’t give a proof here (though theorem .. will yield the same result) but

the effective Galvin-Prikry forcing Solovay uses in [] justifies this interpretation. Thus we

can understand a recursively encodable set as a set that is computable by all sufficiently

fast growing functions.

This notion flips the standard approach to rate of growth questions on it’s head.

Rather than classifying the degrees of the functions that are fast growing relative to some

fixed conception this asks whether any rate of growth is sufficient to compute a given set. It

would therefore seem this would be a promising alternative avenue of investigation into the

relation between Turing degree and rate of growth. However, it wasn’t long before Solovay

[] identified the recursively encodable sets with the ∆1
1 sets yielding an elegant result but

seemingly exhausting this avenue of exploration.

But, classifying the recursively encodable sets only tells us what sets are com-

putable by sufficiently fast growing functions. It does not tell us how fast must a function

grow to compute a particular set or otherwise let us relate particular rates of growth to

computational power. As we will see the notion of a moduli of computation for a set X

introduced by Groszek and Slaman can be thought of specifying a rate of growth sufficient

to compute X. This will allow us to build a much more fine grained picture of the general

relation between rate of growth and Turing degree than the notion of a recursively encodable

set alone allowed us to see.

. Moduli of Computation

Slaman and Groszek [] define the a modulus of computation as follows.

Definition .. (Slaman and Groszek). f ∈ ωω is a modulus (of computation) for X ⊂ ω
if every g � f Turing computes X. If there is a single computable functional Φ such that

g � f =⇒ Φ2(g) = X then we say that Φ witnesses that f is a uniform modulus (of

computation).

It might not be immediately apparent that a modulus can be thought of as deter-

mining a rate of growth sufficient to compute X but by considering finite modifications to

the function g we arrive at the following observation.
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Observation ... If f is a modulus for X and g �∗ f then g ≥T X.

Thus so long as g grows faster than the modulus for X g can compute X. At this

point it is natural to ask whether there are any non-computable sets with a modulus.

Observation ... If θ1(x) = max
i≤x

µt (Φi(∅; i)↓t ) then θ1 is a uniform modulus of 0′.

We can straightforwardly extend this observation to every degree d˜ with d˜ ≤T 0′

by noting that the degrees with moduli are downward closed.

Lemma ... If X has a (uniform) modulus and Y ≤T X then Y has a (uniform)

modulus.

Proof. Let f be the modulus for X. If g � f then g can compute X and hence g can

compute Y . If f is a uniform modulus for X then there is a single procedure for any such g

to compute X and by composing this with the reduction from X to Y this yields a uniform

procedure for any such g to compute Y .

. Self-Moduli

Given the framework provided by moduli of computation a natural object of in-

terest is the class of sets possessing the simplest possible moduli, i.e., those sets which are

guaranteed to be computable by functions with the least possible rate of growth. Obviously

if f is a modulus for X f must be able to compute X but observation .. demonstrates

that in some cases f can be computable from X. This class, i.e, the sets which can compute

their own modulus, will be a major object of interest in our investigations.

Definition .. (Slaman and Groszek). Say f ∈ ωω is a self-modulus (of computation)

if f is a modulus for some set X with f ≡T X. f is a uniform self-modulus if it is a

uniform modulus for X.

The function from observation .. already provides us with an example of a

non-computable uniform self-modulus so the natural question to ask now is: what kinds

of degrees have self-moduli? Slaman and Groszek demonstrated that every ∆0
2 degree has

a uniform self-modulus and we relativize their proof to give a nice closure condition for

uniform self-moduli.
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Lemma ... Suppose that f is a uniform self-modulus and that Z ∈ ∆0
2(f) computes f

then there is a self-modulus f∗ ≡T Z. Moreover, an index for the reduction witnessing that

f∗ is a uniform self-modulus can be uniformly computed from a ∆0
2(f) index for f∗ and an

index for the reduction witnessing f is a uniform self-modulus.

Proof. By the limit lemma [] and out identification of total functions with their graphs

there is a function r ≤T f with

lim
s→∞

r(x, s) = Z(x) =

1 if x ∈ Z

0 if x 6∈ Z
Now define

f∗(〈〈x, s〉〉) =

f(x) if s = 0

min {t > s|r(x, t) = Z(x)} if s > 0

Evidently f∗ ≤T Z⊕f and by assumption Z ≥T f hence f∗ ≤T Z. Now suppose g � f∗. As

g(〈〈x, 0〉〉) ≥ f∗(〈〈x, 0〉〉) = f(x) using the uniform self-modulus for f we can calculate f from

g. Using f we compute Z(x) by searching for an s large enough that for some fixed i ∈ {0, 1}
and every t with s ≤ t ≤ g(〈〈x, s〉〉) we have r(x, t) = i. Since g(〈〈x, s〉〉) ≥ f∗(〈〈x, s〉〉) for

at least one t between s and g(〈〈x, s〉〉) r(x, t) = Z(x). Therefore Z(x) = i. Note that the

stage at which lims→∞ r(x, s) achieves it’s limit is such an s guaranteeing this procedure

converges for every x.

The reduction described above is evidently uniform in terms of a f index for r

and an index witnessing f is a uniform self-modulus. By lemma .. a ∆0
2(f) index for

Z is interchangeable with an index for r as an f computable function this is sufficient to

establish the second half of the lemma.

Corollary .. (Slaman and Groszek). If X ∈ ∆0
2 then X has a uniform self-modulus.

Proof. Immediate from lemma .. and the fact that 0˜ has a uniform self-modulus.

By also showing the class of sets with a uniform self-modulus is closed under effec-

tive joins we can demonstrate that there are self-moduli all the way up the hyperarithmetic

hierarchy.

Lemma ... Given a sequence of functions 〈fi〉i∈ω and a computable sequence of indexes

〈ei〉i∈ω such that Φ2
ei witnesses fi is a uniform self-modulus of Xi then f =

⊕
i∈ω fi is a
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uniform self-modulus of X =
⊕

i∈ωXiand an index for the reduction witnessing this can be

effectively found from an index for the function i 7→ ei.

Proof. Suppose g � f we exhibit a procedure to compute X(z) from g for an arbitrary

z = 〈〈i, y〉〉. By the interpretation of
⊕

i∈ω fi we adopted for functions in convention ..

part  we can conclude that g[i] � fi and thus Φ2
ei(g

[i]; y) = Xi(y) = X(〈〈i, y〉〉). The

uniformity follows directly from the uniformity of each self-modulus fi and the uniformity

of the pairing function.

We could easily weaken the assumptions in the preceding lemma. For instance

instead of requiring an outright computable function enumerating the reductions we might

only demand that there is a uniform means of recovering ei+1 from fi. However, this result is

already sufficient to guarantee the uniform self-moduli go all the way up the hyperarithmetic

hierarchy and, as we are about to see, even include all the REA sets. Thus attempts to

enlarge the class of iteratively generated sets with uniform self-moduli are unlikely capture

any larger natural class of degrees. Later, however, we will turn to non-iterative methods

to completely classify the degrees of uniform self-moduli but now we demonstrate that the

REA sets indeed have uniform self-moduli.

Proposition ... Every REA set X has a uniform self-modulus f . Furthermore an index

witnessing this fact can be uniformly computed from an REA index for X.

Proof. We approach this as if we were offering a standard inductive argument. First we note

that if X is a 0-REA set then X = ∅ thus the lemma trivially holds for κ = 0. Therefore

we assume the proposition holds for every γ with γ <O κ and show it also holds for κ. If

κ = α + 1 then there must be some REA set X̂ and a pseudo-jump operator Ju such that

Ju
(
X̂
)

= X̂ ⊕WX̂
e′ = X. Thus by the inductive assumption we can apply lemma .. to

show there is a uniform self-modulus of degree d˜.
In the case κ is a proper limit then by definitions .. and .. there is a

uniformly in κ computable sequence 〈〈〈βk, c〉〉〉k∈ω of REA indexes sets with X =
⊕

i∈ωXi.

By our inductive hypothesis there is a function fk and a reduction Φek computing Xk

from and g � fk. If we could assume there was a a single computable function h with

h(〈〈βk, c〉〉) = ek for every k then by .. we would be done. However, the inductive

hypothesis only guarantees that for every β <O κ we have a function hβ which operates

as desired on pairs 〈〈β′, c′〉〉 with β′ <O κ and we need a single function to extend all the
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way up through κ. Intuitively this shouldn’t be a problem because we always extend our

translation from REA indexes to indexes for reductions in a uniform fashion so we should be

able to offer one definition of this function that works for all β <O κ. However, rigorously

demonstrating this requires us to deploy the fixed point lemma and approach the problem

in a slightly different fashion. We demonstrate this approach in this lemma to illustrate the

method but will omit it in later proofs.

Instead of trying to induct directly we now attempt to define the computable

operations that let us extend our computable translation to higher ordinals. Thus given

some notation for a limit ordinal λ we simply suppose we have a computable function hλ

that translates indexes for a REA set of level less that λ as we desired above. Now if Φt = hλ

then by the argument we couldn’t use in the prior paragraph and the uniformity of lemma

.. there is a computable function p so that p(t) is an index for hλ+O1. Alternatively

suppose that for some notation α +O 1 the index of our translation hα+O1 is t. As our

argument for successor stages in the first paragraph was evidently effective there is some

computable function s so that s(t) is an index for a function hα+O2. It only remains to

show that we can put these methods of extending our translation together to form a single

computable function.

Now given an arbitrary REA index a = (κ, e) we define a computable function c,

making use of our conventions .. and .., satisfying:

Φc(e)(∅; a) =


e0 if κ = 0 where (∀k) (Φe0(g; k) = 0)

Φs(e)(∅; a) if κ (is a successor notation)

Φp(t)(∅; a) if κ (is a limit notation)

By the fixed point theorem [] there is some e so that Φc(e) w Φe. We claim

that if a is an index for a REA set X then Φe(∅; a) is an index for a uniform self-modulus

f ≡T X. This is trivial if a codes for a 0-REA set, i.e., ∅, and if we assume that Φe works

for all indexes of γ-REA sets for γ <O κ the definition of Φc(e) guarantees Φc(e) and hence

Φe must also work for κ. This completes the proof.

The proof technique used in proposition .. are fairly standard in constructions

dealing with ordinal notations. The general pattern is that some computable function must

be extended to all ordinal notations while maintaining some property but to show this

property can be maintained at limit stages seems to require that one have already shown
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that there is a single computable function that works for every stage below the limit. As

the argument here illustrated we can overcome this difficulty by showing that there is a

uniform means to transform a computable function defined on the ordinals less than κ to

one that is also defined on κ and letting the fixed point theorem do the work. In the future

we will simply observe that the relevant steps are uniform and let the interested reader refer

back to this proof.

Corollary ... There is a uniform self-modulus of 0(α) for every notation α. Also every

Kleene H-set is of the same degree as a uniform self-modulus.

Proof. 0(α) is a α-REA set as are all Kleene H-sets.

Corollary ... Every ∆1
1 set has a uniform modulus.

Proof. By theorem .. if X ∈ ∆1
1 then X ≤T 0(α) for some α <O ωck1 . By corollary ..

this entails X is below a set with a uniform modulus and thus by lemma .. X has a

uniform modulus.

. Definability From Fast Growing Functions

An obvious question to ask now is what degrees have a modulus. This question

takes on particular import since the property of having a modulus and that of being re-

cursively encodable seem to both capture some notion of being computable from every fast

enough growing function. If these didn’t turn out to capture the same class of sets one

might worry that our understanding of the concepts was flawed. But indeed a theorem of

Groszek and Slaman [] shows that the sets with a self-modulus are just the ∆1
1 sets, which

by Solovay’s result [] are exactly the recursively encodable sets.

Theorem .. (Slaman and Groszek). X has a modulus iff X ∈ ∆1
1.

We approach this problem by breaking it up into pieces. First we demonstrate the

claim holds for sets with a uniform modulus and then show that sets with a modulus have

a uniform modulus as well.

Lemma ... X has a uniform modulus iff X is ∆1
1.
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Proof. ∆1
1 ⇒ uniform modulus by corollary ... To show the other direction we offer a

Π1
1 and Σ1

1 definition of X in terms of the witness Φr for the uniform modulus fX ∈ ωω of

X.

X(y) = 1 ⇐⇒ (∃f ∈ ωω) (∀σ � f)
[
Φr(σ; y)↓ =⇒ Φr(∅; y) = 1

]
(...)

⇐⇒ (∀g ∈ ωω) (∃σ � g)
[
Φr(σ; y)↓= 1

]
(...)

To check the ⇒ direction of equation (...) we note that setting f = fX satisfies the

equation. By the definition of a uniform modulus g � fX =⇒ Φr(g; y)↓= X(y) and

since any σ � fX extends to such a g the right hand side must hold. Conversely assume

the right hand side holds for f = f̄ and choose some function h � fX , f̄ . Again by the

definition of a uniform self-modulus some initial segment h�n of h causes Φ(σ; y)↓= X(y)

so by assumption X(y) = 1.

We verify equation (...) in a similar manner. If the right side of equation

(...) holds there must be some σ, g with σ � g � fX with Φr(σ; y)↓= 1. Conversely if

X(y) = 1 and g ∈ ωω we can always choose σ � g, fX to make Φr(σ;x)↓. Hence X ∈ Σ1
1

and X ∈ Π1
1 so X ∈ ∆1

1.

Lemma ... X has a modulus if and only if X has a uniform modulus.

Proof. Assume that X has a modulus f . Following the approach for Groszek and Slaman

we try to build a g � f so that g �T X in violation of the assumption that f is a modulus.

Our failure to do so will guarantee the existence of a uniform modulus f∗ of X. We build g

using conditions of the form (σ, h) where σ ∈ ω<ω and h ∈ ωω, h� f and σ � h. We view

these conditions as a partially ordered set with the ordering given by

(σ1, h1) � (σ2, h2) ⇐⇒ σ1 ⊃ σ2 ∧ h1 � h2

While we could frame this argument in a slightly more compact form in terms of Hechler

forcing writing out the argument as a construction is more enlightening. We start with our

initial condition (σ0, h0) = (∅, f) and suppose we have defined (σn, hn) we first try to choose

(σn+1, hn+1) so that σn+1 ) σn and:

(σn+1, hn+1) � (σn, hn) ∧ (∃x) (Φn(σn+1;x)↓ 6= X(x)) (...)
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Otherwise we try to satisfy

(σn+1, hn+1) � (σn, hn) ∧ (∃x)
(
∀
(
τ, ĥ
)
� (σn+1, hn+1)

) (
Φn(σ′;x)↑

)
(...)

Suppose for every n we are able to satisfy either equation (...) or equation

(...). As σn+1 is always longer than σn,
⋃
n∈ω σn = g gives us a well-defined total

function with g � f . Furthermore if we satisfied equation (...) at stage e then Φe(g) | X
and if we satisfied equation (...) then Φe(g) isn’t total. But this would mean that g �T

X contradicting our assumption. Therefore there is some stage, say e, in our construction

at which we are incapable of satisfying either equation. Let f∗ = he and define Φ(g) as

follows.

Φ(g;x) = Φe(τ ;x) where τ ⊃ σe ∧ τ � g ∧ Φe(τ ;x)↓ (...)

Obviously Φ(g;x) is a computable functional and if g � he then Φ(g;x)↓. Other-

wise g would be a witness to the satisfiability of equation (...). Furthermore Φ(g) - X

as otherwise it would be a counterexample to the failure of equation (...). Hence Φ

witnesses that he is a uniform modulus for X.

Proof of theorem ... X ∈ ∆1
1 if and only if (by lemma ..) X has a uniform modulus

if and only if (by lemma ..) X has a modulus.

Corollary ... X has a modulus if and only if X is recursively encodable.

Proof. By a result of Solovay [] the recursively encodable sets are just the ∆1
1 sets and by

theorem .. so are the sets with a modulus.
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Chapter 

Categorizing (Uniform) Self-Moduli

. Categorizing Uniform Moduli

We’ve seen that a uniform modulus for X serves as a witnesses that X ∈ ∆1
1

which is interesting in itself but so far we haven’t said much about the relation between

sets and their uniform modulus. Since it is precisely the prospect of relating a set to the

rates of growth sufficient to compute the set that makes moduli a more promising tool than

recursively encodable sets for analyzing computational properties of fast growing functions

this is an obvious direction to explore. However, rather than jumping in blindly and trying

to build a systematic picture of moduli in total generality in one go we start by examining the

uniform self-moduli and expand our results about these objects to moduli more generally.

Theorem ... f ∈ ωω is a uniform self-modulus iff if and only if f is a Π0
1 singleton.

Proof. ⇒Suppose Φu witnesses that f is a uniform self-modulus. We claim that f is the

unique solution to the Π0
1 formula

Ψ(h) = (∀σ � f) (∀t) (∀x) (¬Φu(σ;x)↓t 6= h(x)) (...)

Evidently f is a solution to Ψ and if f ′ 6= f then for some x and g � f ′, f then Φu(g;x)↓=

f(x) 6= f ′(x). Thus there is some σ ⊂ g witnessing that ¬Ψ(f ′). Hence f is the unique

solution to Ψ.

⇐Let Ψ(h) = ∀zR(h�z , z) be the Π0
1 formula witnessing that f is a Π0

1 sin-

gleton. We describe a uniform procedure for computing f from any g � f . Define

Tg = {σ ∈ ω<ω|σ � g}. Since g � f , f ∈ [T ] and if f ∈ [T ] then Ψf so f is the unique path
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through T . Since Tg is finitely branching by K̈nig’s lemma [] if σ ∈ Tg doesn’t extend

to an infinite path then there are only finitely many elements in Tg extending σ. Therefore

to compute f�x from g we simply search for an n so that all paths of length n in Tg extend

a common initial segment of length x. Obviously this computation can be done uniformly

in g.

This theorem characterizes the degrees containing uniform self-moduli in terms of

the definability of elements of ωω. A simple lemma lets us translate between this and the

definability of members of 2ω.

Lemma ... A degree d˜ contains a Π0
1 singleton f ∈ ωω if and only if it contains a Π0

2

singleton F ∈ 2ω.

Proof. ⇒Define F = {〈〈x, y〉〉|f(x) = y}. Suppose ψ(h) = ∀xϕ(h�x , x) witnesses that f is a

Π0
1 singleton then, identifying h�x with the corresponding element of ω<ω in turn identified

with it’s code, define

Ψ(X) = (∀x) (∃~y)
((
∀x′ < x

)
[〈〈x, ~yx〉〉 ∈ X] ∧ |~y| = x ∧ ψ(~y, x)

)
∧

(∀x) (∀y)
(
∀y′
) (
y 6= y′ ∧ 〈〈x, y〉〉 ∈ X =⇒ 〈〈x, y′〉〉 6∈ X

)
Obviously Ψ witnesses that F is a Π0

2 singleton and evidently f ≡T F .

⇐Suppose that Ψ(X) = ∀x∃yϕ(X�y , x, y) witnesses that F ∈ 2ω is a Π0
2 singleton.

Define

f(x) = 〈〈pX�zq, z〉〉 where z = min {y|ϕ(X�y , x, y)} (...)

ψ(h) = (∀x)
(
∃ ~X < h(x)

)
(∃z < f(x))

(
h(x) = 〈〈 ~X, z〉〉 ∧ | ~X| = z ∧ ϕ( ~X, x, z)

)
(...)

Clearly ψ witnesses that f is a Π0
1 singleton and evidently f ≡T F .

Corollary ... X ⊂ ω has a uniform self-modulus if and only if X is a Π0
2 singleton

Proof. Immediate from lemma .., theorem .. and the closure of the Π0
2 singletons

under Turing degree.

Actually we can generalize theorem .. to classify those sets X within κ jumps

of a uniform modulus for X.

Theorem ... There is some uniform modulus f ≤T X(κ) for κ ∈ O if and only if X is

a Π0
2+κ singleton.
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To prove this result we first relativize the fact that 0(κ) contains a uniform self-

modulus to show that X(α) contains a uniform self-modulus relative to X.

Lemma ... For every X ⊂ ω κ <O ωck1 there is a function θκX ≡T X(κ) and a single

reduction computing X(κ) from g ⊕X for any g � θκX .

Proof. Straightforward relativization of corollary ...

proof of theorem ... ⇒This proof is the same as that of theorem .. except we replace

σ � f with σ � Φe(X(κ)) for some x which gives us a Π0
2+κ sentence.

⇐Suppose X is the unique solution of the Π0
2+κ formula Ψ. By lemma ..

this is equivalent to X being the unique path through a Π0
2+κ downward closed tree T .

Suppose ∀x∃yϕ(σ, x, y) ⇐⇒ σ ∈ T . Set f = sup θκ, h where θκ is a uniform modulus

of 0(κ) and h(〈〈x, l〉〉) = min {y|ϕ(X�l , x, y)}. Now if g � f then g can compute the tree

Tg = {σ|∀l < |σ|∀x < |σ|∃y < g(〈〈x, l〉〉)ϕ(σ�l , x, y)}. Since clearly X is the unique infinite

path through Tg by K̈nig’s lemma g uniformly computes X.

. Exploring Self-Moduli

We’ve now developed a substantial collection of self-moduli (all the Π0
1 singletons)

but we don’t have any example yet of a degree that lacks a self-modulus.

Theorem ... If G ⊂ ω is a 2-generic then G has no self-modulus.

Proof. Given a 2-generic G and a total function f = Φe(G) we try to build g � f with

g �T G by Hechler conditions much like we did in lemma .. in our presentation of

Slaman and Groszek’s argument. As before we deal with pairs (σ, h) with σ � h but now

we require h be computable. We start our construction with σ0 = ∅ and h0 = 0. At stage

n + 1 we try to find a string σn+1 and a computable function hn+1 with σn ( σn+1 and

hn+1 � hn and σn+1 � f such that

. Φ2
n(σn+1) | G

. For some x (∀τ ⊇ σn+1)
(
τ � hn+1 =⇒ Φ2

n+1(τ ; x̄)↑
)

If we can’t satisfy either of these conditions we simply set hn+1 = hn and extend σn with an

arbitrary σn+1 ) σn with σn+1 � hn+1 and σn+1 � f . Now if we satisfy either prong it’s
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clear that our function g = ∪n∈ωσn doesn’t compute G by way of Φ2
n+1 and as g � f this

would complete the lemma if it held for every n. Therefore assume that we can’t satisfy

either condition at stage n + 1. From our assumption we can infer that G must force the

following formulas.

G 
 (∀x) (∃s) Φe(G;x)↓s (...)

G 
¬ (∃x, j) (∀τ ⊇ σn) (∀t)[
(∀z < |τ |) (hn(y)↓t< τ(y) ∧ Φe(G; z)↓t≤ τ(z)) =⇒ Φ2

n+1(τ ;x)X ↓t
] (...)

Note that as G is 2 generic it is sufficent to show these formula actually hold for G.

Equation (...) simply asserts that f is total which is required for f to be a self-modulus

of G. Equation (...) simply asserts that our commitment σn ⊂ g doesn’t guarantee the

non-totality of Φn+1(g) which must hold by the failure to satisfy the second prong.

Now select some l long enough that G�l forces all both these formula. Now given

any x > l pick some υ1 and υ2 both extending G�l with υ1(x) 6= υ2(x). Thus if there

were a single τ ⊇ σn and some υ′1 and υ′2 such that τ � hn and τ � Φe(υ′1; , )Φe(υ′2) with

dom Φe(υ′1; , ) dom Φe(υ′2) ⊃ dom τ with Φ2
n+1(τ ;x)↓ this would contradict equation ?? since

both υ′1 and υ′2 could be extended to 2-generics. On the other hand if there was no such τ

then we could define the computable function

hn+1(y) = max Φe(H1; y),Φe(H2; y), hn(y)

where

H i = ∪n∈ωH i
n

H i
0 = υ′i

H i
n+1 = ε ⊃ H i

n which is first such observed to satisfy (∀z < n+ 1) Φe(ε; ()z)↓

This function will certainly be total since each H i
n extends G�l so by equation

(...) there is some 2-generic G′ extending them make Φe(G′) total. However, by the

argument above if τ ) σn and τ � hn+1(y) then Φ2
n+1(τ ;x)↑ But this directly contradicts

the failure to satisfy the second condition. Thus for every n there is a σn satisfying one of

the two conditions thus guaranteeing that G has no self-modulus.
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Chapter 

A Non-Iterative Self-Modulus

. Theorem

Theorem ... For each α ≤ ωck1 there is a non-computable uniform self-modulus f such

that if X ∈ ∆α ∧X ≤T f then X is recursive.

To prove this theorem for α > 2 explicitly defining the action of the reduction

witnessing that f is a uniform self-modulus quickly becomes too complicated to manage.

Instead we take inspiration from our identification of uniform self-moduli with Π0
1 singletons

in ωω.

Lemma ... Suppose T is a computable (downward closed) tree and f is the unique

infinite path through T then f is a uniform self-modulus.

Proof. By lemma .. it is sufficient to observe that every computable tree is also a Π0
1

tree. Hence if f is the unique path through a computable tree it is a Π0
1 singleton.

Note that every tree we encounter in this chapter will be closed under initial

segments.

. Requirements

In order to prove the theorem we will try to build a computable tree T with a

unique path f satisfying the following requirements for every e, i ∈ ω.

Re,i: Either (∃x)¬
(

Φ2
e(0

(α);x)↓= Φ2
i (f ;x)↓

)
or
(
∃i′
) (

Φ2
i (f) w Φ2

i′
)
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Ne: (∃x)¬ (Φe(∅;x)↓= f(x))

To keep things simple we will build the tree T in stages and decide at most one

membership question about T per stage.

Rule ... At stage s of our construction we will decide whether σ ∈ T where pσq = s.

Since we will often want to refer to the state of the tree at stage s we introduce

convenient notation for this object.

Notation ... For a tree T set T [s] = {σ ∈ T |pσq ≤ s}

Note that by our stipulation in subsection .. our coding function satisfies lemma

.. so if σ ⊂ σ′ we always decide σ ∈ T before σ′ ∈ T . The property has the convenient

consequence that our stage s approximation to T is T [s] and if pσq ≤ s then σ ∈ T ⇐⇒
σ ∈ T [s].

We will satisfy Re,i in the standard fashion: we will attempt to satisfy the first

prong of the requirement so throughly that if we fail then we it must be because we’ve

second prong. The basic strategy for satisfying Re,i is to wait until a stage s at which

we observe σ0, σ1 ∈ T [s] forming a Φ2
i split and ensure that f ⊃ σ1 if Φ2

e(0
(α)) ⊇ σ0 and

otherwise f ⊃ σ0. To ensure that the requirements don’t interfere with each other so much

that our construction fails a requirement Re,i won’t be allowed to pick just any Φ2
i split but

will instead have to wait for a split where σ0 and σ1 agree on some initial segment ρ being

used by higher priority machinery. Thus at best what we will be able to guarantee is that if

for every initial segment of the true path f�n is extended by σ0, σ1 ∈ T forming a Φ2
i split

then (∃x)
(
¬Φ2

e(0
(α);x)↓= Φ2

i (f ;x)↓
)
. This, however, is sufficient to show that we satisfy

Re,i.

Lemma ... Suppose there is no Φ2
i split σ0, σ1 ∈ T with σ0, σ1 ⊇ f�n then Re,i is

satisfied.

Proof. We compute Φ2
i (f ;x) by running the algorithm that searches for a σ ∈ T with

σ ⊇ f�n and Φ2
i (σ;x)↓ the result of which it outputs. If Φ2

i (f ;x)↓ then for some m ≥ n

Φ2
i (f�m ;x)↓ so if out computation doesn’t converge then neither does Φ2

f (i;x) thus satis-

fying the first half of the requirement. Alternatively if our algorithm halts and disagrees

with Φ2
i (f ;x)↓ than f�m and σ would form a Φ2

i split extending f�n in violation of the

assumption. Hence if Φ2
f (i) is total we satisfy the second prong of the requirement.
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With this lemma in hand we can modify our requirements to better reflect our

construction.

Re,i: (∃n)
(

(∃σ0, σ1 ∈ T )
[
σ0, σ1 ⊃ f�n ∧Φ2

i (σ0) | Φ2
i (σ1)

]
=⇒ (∃x)

[
¬Φ2

e(0
(α);x)↓= Φ2

i (f ;x)↓
])

Ne: (∃x)¬ (Φe(∅;x)↓= f(x))

Lemma ... Suppose T is a computable tree with a unique infinite path f ∈ [T ] satisfying

requirement . then f satisfies theorem ...

Proof. By lemma .. we can instead suppose f satisfies requirement .. Since f satisfies

Ne for every e it is not equal to any computable function and by satisfying Re,i for every

pair (e, i) f avoids computing any set X ≤T 0(α) that doesn’t satisfy X ≡T 0˜. Finally by

lemma .. f is a uniform self-modulus.

. Markers & Assignments

To organize our construction we place markers on nodes in our tree to indicate that

a particular node is reserved for a certain purpose in our construction. Since at a given stage

s we won’t know which branches in T [s] extend to an infinite path we must try to satisfy

the requirements on all branches. Thus we will assign a single marker to different locations

on different paths and it may occupy different locations at different stages. Therefore we

formally define a marker

Definition ... A marker m is a computable function taking a stage s to a finite,

pairwise incompatible set of nodes, ms. Also we set m∞ =
⋃
t∈ω
⋂
t′>tmt′

We will frequently abuse notation and speak of markers as if they occupied only

a single location. Thus we will often use a statement like "ms is located at σ" to mean

that σ ∈ ms or, when context restricts our attention to initial segments of some ρ, to mean

that σ ∈ ms(ρ). We use the symbol m when we wish to refer to an arbitrary marker but

our construction will make use of four different types of markers and it will be convenient

to distinguish between them. The types of markers we use and their intended application

are listed below. Note that typographic clarity demands we avoid placing an excessive

number of indexes on each symbol so we don’t assume that the value of the subscripts and

superscripts of the symbols below uniquely determine a marker.
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n〈e〉,: Used to diagonalize against Φe to meet requirement Ne.

r∗〈e,i〉: A collection of markers used to occupy the nodes injured when Re,i acts to reserve a

Φ2
i split.

rj〈e,i〉: This marker is placed at the node τj where τk, k ∈ {0, 1} forms one of the Φ2
i splits

reserved for Re,i. r
j
〈e,i〉 serves to tag the nodes in the split and initiate the Re, imodule.

ξϕ: This marker does the actual work to ensure the unwanted side of the Φ2
i split for Re,i

is terminated. As choosing the correct path is a 0(α+1) question the markers in our

construction will often hire employee markers to help them reach the right conclusion

and the formula ϕ encodes the orders given to this employee.

We now explain how these markers are assigned to nodes in our tree.

Definition ... The request queue, Qs is the set of ordered pairs (m, σ) such that a

request to cover σ with m (or alternatively enumerate m above σ ) was enumerated

at t ≤ s and was not removed from Q at any t′ with t ≤ t′ ≤ s. We also adopt the notation:

Q∞ =
⋃
s∈ω

⋂
t>s

Qs (...)

Qŝ (ρ) = {m|(m, σ) ∈ Qŝ ∧ σ ⊆ ρ ∧ (∀τ ∈ mŝ) (τ | ρ)} for ŝ ∈ ω ∪ {∞} (...)

As the name suggests a request to cover σ with m will result in m containing a

T -cover of σ. Particularly we use the priority of the enumerated markers to control when

they are assigned to the tree as follows. We will implement our finite injury argument by

assigning priorities to requirements and markers in our construction and only allowing those

requirements that are important than the markers they wish to remove from T to act. This

will be described in the next section but we need to introduce the notion of priority to

explain our rule for assigning markers to nodes.

Notation ... We call the integer we associate to every marker and requirement the

priority of the marker/requirement and denote this number by the application of the

‘function’ P. To avoid the ambiguity inherent in saying "higher priority" we will say one

marker/requirement Q is more important than Q′ to indicate that P (Q) < P (Q′).
1P isn’t truly a function as requirements aren’t truly elements in the object language. Technically P is

merely a notational convenience analogous to a macro in a programming language.
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Rule ... If, at stage s of the construction, the node σ is allowed to enter T [s] we assign

to σ the marker in Q (σ) with the numerically least priority that isn’t already assigned to

some σ′ ⊂ σ.

If any marker anywhere in our construction could enumerate requests for arbitrary

markers to cover random nodes our construction would quickly spiral into overwhelming

complexity. We first limit this ability by giving an explicit and exhaustive enumeration of

requests for the markers n〈e〉,.

Rule ... At the beginning of the construction for every e ∈ ω we enumerate a request

for n〈e〉, to be enumerated above ∅. These are the only requests for the markers n〈e〉, made

in the construction.

We further limit requests by restricting the relation between m and the nodes σ′

it can request be covered. This limit reflects the idea that a request enumerated by m

should be seen as a delegation of part of the task m was assigned to a subordinate since it

must have been work that m could have done itself if sufficiently capable (had access to a

powerful oracle).

Rule ... If m enumerates a request at stage s for m′ to cover σ′ then there exist σ, y

with σ 〈̂y〉 = σ′ and σ ∈ ms. Also m′ is of the form ξϕ while m is of any form except r∗〈e,i〉.

Later in our construction it will be important to easily indicate how the markers

relate in terms of their requests.

Definition ... Say that the marker m is a child of m′ denoted m C1 m′ if m′ was the

marker that requested m. We say m is a descendant of m′ if m Cω m′ where Cω is the

transitive closure of C1. We define parent and ancestor analogously.

At this point we now have the tools to clarify the meaning of our notation for

markers. Without inducing confusion and inordinate proliferation of indexes on our symbols

we can’t guarantee there is a bijective correspondence between the indexes of the symbols

we use and the actual markers but for some markers it’s important that we be able to

uniquely refer to them in a simple fashion so we make the following stipulations.

Notation ... • rj
′

〈e′,i′〉 = rj〈e,i〉 ⇐⇒ e = e′ ∧ i = i′ ∧ j = j′

• n〈e〉, = n〈e′〉, ⇐⇒ e = e′
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• ξϕ = ξϕ
′ if and only they are both symbols represent the marker resulting from the

same request in Q.

. Priorities & Injuries

The priorities we will use during the construction are the following.

P (Re,i) = P
(
r∗〈e,i〉

)
= P

(
rj〈e,i〉

)
= 3 · 〈e〉ij + 1 (...a)

P
(
n〈e〉,

)
= 3 · e (...b)

P (ξϕ) = 3 · 〈〈υ, t,+〉〉2 where t is the stage (ξϕ, υ) entered Q
(...c)

While our construction must be infinitary to diagonalize against computations in

0(α) this is reflected in the difficulty of recovering f from T so we won’t require any infinitary

arguments in the placement of our markers. However, along any particular path we still

may need to move a given marker finitely many times to make room for the requirements

Re,i and this is what we will refer to as an injury.

Definition ... A marker m is injured at σ during stage s if σ ∈ ms but σ 6∈ ms+1. m

is injured along ε ∈ ω<ω ∪ ωω at stage s if m is injured at σ during stage s for some σ - ε.

The only reason we will need to injure a marker is to reserve two nodes τ0, τ1

forming a Φ2
i split for some requirement Re,i. During the normal (injury free) parts of our

construction we will guarantee the various modules place nicely together by ensuring that

if σ ∈ m and no ancestor of m demands that σ 6∈ T∞ then m, aided by it’s descendants,

ensures that for all but one y σ 〈̂y〉 6∈ T∞. However, if ρ is longest common initial segment

of τ0, τ1 then if υ ∈ m′ with υ ⊇ ρ and υ 6⊇ τi for some i then m′ very likely will be prevented

from doing it’s duty since we can’t let any such marker cut off either τi nor can we allow

any extension of ρ incompatible with both τi to grow into an infinite branch. To keep things

simple we don’t bother to preserve markers assigned to extensions of either τi.

Furthermore a marker m operating at σ ∈ m may request that some child marker

be enumerated over σ 〈̂y〉 for the purposes of delegating work that is too complex for m to

accomplish on it’s own. Indeed we will actually let m do this countably many times over

σ̂〈y〉. However, this delegation would be meaningless if m wasn’t present to manage the
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process and ensure everything was completed. However, these unsupervised markers might

cause trouble on their own so we also ensure that no employees are ever left unsupervised

on our tree.

Rule ... Suppose at the end of stage s we observe maximal elements τ0, τ1 ∈ T [s] with

Φ2
i,s(τ0) | Φ2

i,s(τ1) and there exists a minimal string ρ ⊂ τ0, τ1 satisfying:

(∀m) (∀σ ∈ m) ([P (m) ≤ P (Re,i) ∧ σ - ρ] =⇒ σ ( ρ) (...)(
∀e′
) (
P (Re,i) < P

(
Re′,i

)
=⇒ (∃j)

(
∃τ ∈ rj〈e′,i〉

)
[τ ( ρ]

)
(...)

¬
(
∃ρ′ ⊆ ρ

) (
ρ′ ∈ r∗〈e,i〉,s

)
(...)

Then Re,i removes every marker located at a string σ ⊆ ρ as well as any requests in Qs
enumerated by these markers. Then at every node σ ⊆ ρ except τ0, τ1 Re,i places a marker

r∗〈e,i〉. Finally Re,i places τj ∈ rj〈e,i〉 for j ∈ {0, 1}.

Definition ... If Re,i, ρ, τ0, τ1, s are as in rule .. we say Re,i acts at ρ during stage s

to preserve τ0, τ1. We say Re,i is injured at ρ (along ε ⊇ ρ) during stage t > s if ρ 6∈ r∗〈e,i〉,t+1.

As rule .. is the exclusive means for injury in our construction we are almost

in a position to show that the finite injury component of our construction works properly.

First we need to guarantee that if Re,i acts at σ and is never injured at σ then no paths

extend σ but not one side of the Φ2
i -split. We do this by demanding that whenever υ is

occupied by a marker r∗〈e,i〉 no immediate extensions of υ are allowed to enter T .

Rule ... If υ ∈ r∗〈e,i〉,s and pυ̂〈y〉q = s then υ̂〈y〉 6∈ T .

Lemma ... Given any f ∈ ωω there is some n ∈ ω so that either there is no Φ2
i -split

in T extending f�n or there is some stage s and string σ ⊂ f so that Re,i acts at σ during

stage s and no marker of the form r∗〈e,i〉 or r
j
〈e,i〉 gets injured at σ′ ⊇ σ at any stage after s.

Furthermore Re,i only acts at finitely many times along f .

Proof. We first note that unless that once Re,i has acted at σ by equation (...) it won’t

act at any extension of σ unless Re,i is injured at σ. This follows because by rule .. the

only extensions of σ not already occupied by markers of the same priority as Re,i will extend

the Φ2
i split. Additionally we note that the priority of the marker assigned to a given string

υ can only increase during the construction so Re,i can only act finitely many times along

any finite string.





We now prove this lemma by induction on the priority of Re,i. First assume that no

requirement Re′,i′ is more important than Re,i. As our exclusive rule allowing for injuries

never allows the injury of a higher priority marker no marker of the form r∗〈e,i〉 or rj〈e,i〉
can be injured thus the lemma is easily satisfied. Now assume this lemma holds for all

requirements Re′,i′ with P
(
Re′,i′

)
< P (Re,i). Pick a stage large t enough that no more

important requirement ever acts after t along f . Now wait until a stage t′ > t where all of

the finitely many markers with higher priority than Re,i that will ever be assigned locations

along f after t have been assigned to some location along f . Let n be the length of the

longest initial segment of f in T [t′]. We know Re,i only acts finitely many times along

f�n so the lemma is satisfied unless there is a Φ2
i split extending f�n. If there is such a

split then Re,i can act on it since f�n witnesses that some ρ as in rule .. exists and no

higher priority requirement is available to injure any marker of the form r∗〈e,i〉 or rj〈e,i〉 at

any location extending f�n

Lemma ... For every f ∈ ωω and marker m there are at most finitely many injuries

of m along f . Also there are only finitely many injuries that occur at any σ ∈ T .

Proof. In order for a requirement Re,i to injure m along f Re,i must act along f . Thus

by lemma .. no finite collection of requirements could be responsible for the failure of

the lemma. However, there are only finitely many requirements with a higher priority than

any particular marker so the first half of the lemma must hold. To verify the second half

observe that this would require an infinite chain of markers with descending priorities acting

to injure the marker at σ.

Lemma ... If a request for m to cover σ is enumerated at stage s and no marker

responsible for that request is injured after stage s then m∞ contains a T -cover of σ.

Proof. Suppose not then for some f ∈ ωω, f ⊃ σ every assignment ofm along f is eventually

injured. This can’t happen infinitely many times by lemma ... Thus the only way the

rule can fail is if after some staget m is never assigned to any location along f . Pick t′ > t

so that every marker of numerically lower priority than m has been injured for their last

time along f and a t′′ > t so every marker of numerically lower priority than m that will

ever be assigned along f after t′ has been. Now by rule .. at stage t′′ + 1, m is assigned

to a location along f . Contradiction.





Lemma ... For every σ ∈ T there is some marker m such that σ ∈ m∞. Furthermore

if any marker was ever injured at σ then m is of the form rj〈e,i〉 or r
∗
〈e,i〉.

Proof. By rule .. the set Q (τ) will never be empty for any τ so by rule .. every node

entering T is assigned a marker. Also every injured marker is replaced with a new marker

so the first half of the lemma follows from lemma ... To see the second half of the lemma

holds observe that when σ is injured a marker of the form rj〈e,i〉 or r∗〈e,i〉 will be assigned to

σ.

. Marker Action

Our construction can be thought of as occurring on 2 layers. At the management

layer we will explicitly enumerate requests for various markers and describe the changes

made in case of injury. At the machinery layer various markers will act, both to enumerate

requests and to decide what further nodes are in T . More precisely we restrict the influence

of a particular marker to enumerating child markers and to deciding what happens to the

immediate successors of it’s node.

Rule ... Suppose pτ̂〈y〉q = s and τ ∈ ms then at stage s the module associate with m

decides the membership of τ̂〈y〉 in T .

Notation ... We say ϕ is requested over σ 〈̂y〉 to abbreviate the claim that the marker

assigned to σ enumerates a request to cover σ̂〈y〉 by ξϕ

Therefore we first articulate a way to give orders to the markers ξϕ which, as the

notation suggests, will be by way of sentences ϕ ∈ CLω1,ω. The intended interpretation of

this formula is that if ϕ is requested over σ and ¬ϕ then the ξϕ module will ensure that no

infinite path extends σ. On the other hand if ϕ holds then ξϕ shouldn’t block an infinite

branch from extending σ. However, as ξϕ must avoid proliferating branches that might

grow to multiple infinite branches if τ ∈ ξϕ then ξϕ will ensure that all but one immediate

extension of τ is killed off. Surprisingly it is actually easier to just go ahead and detail the

behavior of ξϕ rather than offering more theoretical definitions to capture how it behaves.

.. ξϕ Module

Rule ... Given a marker ξψ, where ψ is syntactically written as a Σ0
κ or Π0

κ sentence

(not merely equivalent to one), we define the behavior of ξψ at τ ∈ ξψ∞ by specifying the
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immediate extensions of τ allowed to enter T and the requests enumerated by ξψ based on

the properties of ψ.

Case : κ = α+O 1 ∧ ψ = ∃xψ̂(x)

Let ϕz be the effectively indexed sequence of formula given by lemma ..

such that ϕz ∈ Π0
α and ϕz ↔ (∃x < z) ψ̂(x). Let ϕ′0 = ϕ0 and ϕ′k+1 =

ϕk+1 ∧ ¬ϕk Then the marker ξψ ensures:

• (∀y) (τ̂〈y〉 ∈ T )

• For every y, ϕ′y is requested over τ̂〈y〉.
Case : κ = α+O 1 ∧ ψ = ∀xψ̂(x)

The marker ξψ ensures:

• τ̂〈y〉 ∈ T ⇐⇒ y = 0

• For every n, ψ̂(n) is requested over τ̂〈0〉.
Case : κ = λ a limit and ψ =

∨∨ω
i=0 ϕi, ϕi ∈ Σ0

~λλn
∪Π0

~λλn

Let ϕ̂i be the effectively generated formula guaranteed to exist by propo-

sition .. so that ϕ̂n ⇐⇒
∨∨n
i=0 ϕi where ϕ̂n ∈ Σ0

λn
∪Π0

λn
. Furthermore let

ϕ̂′0 = ϕ̂0 and ϕ̂′n+1 = ϕ̂n+1 ∧ ¬ϕ̂n. Then the marker ξψ ensures:

• (∀y) (τ̂〈y〉 ∈ T )

• For every y, ϕ′y is requested over τ̂〈y〉.
Case : κ = λ a limit and ψ =

∧∧ω
i=0 ϕi, ϕi ∈ Σ0

~λλn
∪Π0

~λλn

The marker ξψ ensures:

• τ̂〈y〉 ∈ T ⇐⇒ y = 0

• For every n ψ̂(n) is requested over τ̂〈0〉.
Case : κ = 0

Let R be a computable predicate effectively recovered from the definition

of ψ such that R = 1 ⇐⇒ T |= ψ and otherwise R = 0. The marker ξψ

ensures:

• τ̂〈y〉 ∈ T if and only if R↓y = 1 and for no y′ < y, R↓y′ = 1.

• ξψ makes no requests.
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.. n〈e〉, Module

Our aim with the n〈e〉, module is particularly simple. If σ ∈ n〈e〉,∞ and Φe(∅; |σ|+
1)↑ or Φe(∅; |σ| + 1)↓ 6= 0 then σ 〈̂0〉 ∈ T and y 6= 0 =⇒ σ 〈̂y〉 6∈ T . Otherwise we want to

make sure that for some y 6= 0, σ 〈̂y〉 ∈ T and no other extension of σ is allowed to extend

to an infinite path.

Rule ... If n〈e〉, is assigned to σ at stage s then at any stage t > s with σ ∈ n〈e〉,t the

marker n〈e〉, takes one of several actions depending on the value of t. In describing these

actions we set tn = pσ̂〈n〉q and x = |σ| + 1.

Case : t 6= tn, n ∈ ω
Do nothing.

Case : t = t0

Allow σ̂〈0〉 to enter T .

Case : t = tn+1 ∧ ¬Φe(∅;x)↓tn = 0

Do nothing.

Case : t = tn+1 ∧ Φe(∅;x)↓tn = 0

Allow σ̂〈n+ 1〉 to enter T and request J0 = 1K over σ̂〈0〉
.. rj〈e,i〉 Module

Given that rule .. completely characterized the behavior of the markers of

the form r∗〈e,i〉 it only remains to explain how the module for rj〈e,i〉 behaves during the

construction. Surprisingly, even while rj〈e,i〉 must answer the most complicated question in

the construction this module is no more complex than the one for n〈e〉,.

Rule ... Suppose Re,i acts at ρ during stage s assigning rj〈e,i〉 to τj respectively with

τj and x̄ chosen so that Φ2
i (τj ; x̄) = j. We let ψ1 be the Σ0

α+1 sentence asserting that

Φ2
e(0

(α); x̄)↓= 0 and ψ0 = ¬ψ1 and simultaneously describe the behavior of rj〈e,i〉 acting at

τj for j ∈ {0, 1}.

• rj〈e,i〉 allows τĵ〈y〉 into T where y is the least number such that pτĵ〈y〉q > s but

denies τĵ〈y′〉 for y′ 6= y.

• rj〈e,i〉 requests that ξψj cover σ̂〈y〉
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Note that the reason it was necessary to use τj 〈̂y〉 rather than τj 〈̂0〉 in the above

rule is that rule .. only guarantees that rj〈e,i〉 is placed at a maximal element in T [s].

Thus it’s possible that a finite number of immediate extensions of τj have already been

denied entry in T by the time rP〈e,i〉j takes over at τj . This isn’t a worry for ξϕ or n〈e〉, as

rule .. ensures they are always placed at a virgin node on the tree.

. Verifying The Construction

An important assumption at work in the description of the basic modules above

is the idea that we can ‘cancel’ an immediate extension σ 〈̂y〉 of a node σ either by directly

blocking them from entering the tree or by enumerating a request that some ξϕ cover σ 〈̂y〉
where ϕ is false. We then capture the intuitively uncanceled extensions of σ with the

following notation.

Definition ... Given σ fix m so σ ∈ m∞ϕ and if m 6= r∗〈e,i〉 define:

Υσ =
{
σ̂〈y〉 ∈ T ∣∣∣(@ξψ)((ξψ, σ̂〈y〉) ∈ Q∞ ∧ ¬ψ)} (...)

Otherwise if σ ∈ r∗〈e,i〉,∞ set

Υσ = {τj |σ ⊂ τj ∧ ψj} where ψj is as in rule .. (...)

Ultimately we want to use this definition to inductively prove the existence of a

unique true path through T satisfying all the requirements but before that can happen we

need to verify that false sentences ϕ genuinely do prevent infinite paths.

Lemma ... Given σ ∈ ξψ∞ then

¬ψ =⇒ Υσ = ∅ =⇒ (@f ∈ [T ]) (σ ⊂ f) (...)

ψ =⇒ |Υσ| = 1 (...)

Proof. Obviously if ϕ ∈ Σ0
0 ∪Π0

0 then by rule  of rule .. |Υσ| = 1 if T |= ϕ and Υσ = ∅
otherwise. Therefore we suppose the lemma holds for all ϕ ∈ Σ0

β(T ) ∪ Π0
β (T ) for β <O κ

and show it must also hold for ϕ ∈ Σ0
κ(T ) ∪Π0

κ (T ) .

Case : κ = α+O 1 ∧ ψ = ∃xψ̂(x)

Let x̂ = min
{
x
∣∣∣T |= ψ̂(x)

}
. Note that if ¬ψ then x̂ is undefined and hence
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for every n ¬ϕ′n where ϕ′n is as in rule . Hence if ¬ψ then Υσ = ∅. By lemma

.. since ξψ is never injured at σ there will be some node σ′ along every

infinite path through T extending σ̂〈n〉 with the marker ξϕ′n assigned to it

which, by our inductive assumption, shows equation (...) holds. On the

other hand if ¬ψ then x̂ is the unique value such that ¬ϕ′x̂. Hence |Υσ| = 1

Case : κ = α+O 1 ∧ ψ = ∀xψ̂(x)

Since rule  lets only σ̂ 〈0〉 into T by a similar argument Υσ 6= ∅ iff |Υσ| = 1 iff

¬ϕ for every formula ϕ requested over σ 〈̂0〉. However, the formulas requested

over σ̂〈0〉 were just the formulas ψ̂(n) for n ∈ ω which all hold if and only if

¬ψ.

Case : κ = λ a limit

Same argument as the existential case if ψ is an infinite disjunction and same

as the universal case if ψ is an infinite conjunction.

Lemma ... For all σ ∈ ω<ω, |Υσ| ≤ 1.

Proof. We already established this if σ ∈ ξϕinfty for some ξϕ. By lemma .. the following

three cases exhaust the alternatives.

Case : σ ∈ n〈e〉,∞
If n〈e〉, only allows σ̂〈0〉 to enter T the conclusion is immediate. But by

rule .. n〈e〉, will allow σ̂〈y〉 ∈ T for at most one y, requesting J0 = 1K over

σ̂〈0〉 if it does.

Case : σ ∈ rj〈e,i〉,∞
This is immediate as rj〈e,i〉 is always assigned to a maximal node in the current

tree and only allows a single immediate successor of that node to enter.

Case : σ ∈ r∗〈e,i〉,∞
The only situation of possible concern is when σ is extended by both τ0 and

τ1 but since ψ0 is the negation of ψ1 they can’t both be true.
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Lemma ... Suppose that f ∈ [T ] and that f ⊃ ρ =⇒ f ⊃ Υρ then the requirement

Re,i is satisfied.

Proof. If there is no ρ ⊂ f that was acted on by Re,i and not later injured then Re,i is

satisfied by lemma ... Therefore suppose there is such a ρ. Since ρ is extended by both

sides τ0, τ1 of the corresponding Φ2
i split definition .. tells us Υρ = {τj |ψj} where ψj is

as defined in rule ... But ψ1 holds if and only if Φ2
e(0

(α)) agrees with τ0 at a location

τ0, τ1 disagree. So surely if ψ1 is satisfied then, as the two sentences are negations of each

other, f ⊃ τ1 and the requirement Re,i is satisfied. Similarly if ψ0 holds then f ⊃ τ0 and

the requirement is satisfied as well.

Lemma ... Suppose that f ∈ [T ] and that f ⊃ ρ =⇒ f ⊃ Υρ then the requirement Ne

is satisfied.

Proof. By rule .. the construction starts with a request for n〈e〉, to cover ∅ and since this

request wasn’t made by a marker lemma .. tells us that n〈e〉,∞ contains a T -cover of ∅.
Hence there is some ρ ⊂ f with ρ ∈ n〈e〉,∞. Now rule .. tells us that if we never observe

Φe(∅; |ρ|+1)↓= 0 then ρ̂ 〈0〉 is the only immediate extension of ρ on T and n〈e〉, enumerates

no requests over ρ̂〈0〉 so Υρ = ρ̂〈0〉. Thus in this case ¬Φe(∅; |ρ| + 1)↓= f(|ρ| + 1).

Alternatively if Φe(∅; |ρ| + 1)↓= 0 then at some stage n〈e〉, notices this fact and allows

ρ̂〈y〉 ∈ T and enumerates a request over σ̂〈0〉 for a false sentence. In this caseΥσ = y so

Φe(∅; |ρ| + 1)↓= 0 6= f(|ρ| + 1). Either way Ne is satisfied.

Proof of theorem ... Set σ0 = ∅ and choose σn+1 ∈ Υσn . We claim that f =
⋃
n∈ω σn

satisfies the theorem. By lemma .. and lemma .. we see that f satisfies the require-

ments so it’s left only to show that f is the unique path through a computable tree T . By

construction T is computable and lemma .. tells us that if f ′ ∈ ωω, f ′ 6= f then there

is some τ ⊂ f ′ so that either Υτ = ∅ or the unique member of Υτ is incompatible with

f ′. However, by definition of Υτ this can happen only in three ways. Either f extends

some node not in T , f extends some ρ that was acted on by Re,i and never injured but

fails to extend the τj whose associated sentence ψj is true, or extends some τ ′ with some

(ξϕ, τ ′) ∈ Q∞ where ϕ is false. By the module for rj〈e,i〉 the second case entails either the

first or third case and by lemma .. the third case entails the first. Hence if f ∈ [T ] is

total then f is the unique such path.
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We suppose, by way of induction, that for any σ′ ⊆ σn if (ξϕ, σ′) ∈ Q∞ then ϕ is

true. By our stipulation in rule .. if σn satisfies the inductive hypothesis and σn ∈ ξϕ∞
or σn ∈ n〈e〉,∞ then so does σn+1. By lemma .. the only other case to consider is where

σn ∈ r∗〈e,i〉,∞ but in this situation if σn+1 ∈ Υσn then there are no requests (ξϕ, σ′) ∈ Q∞
for σn ( σ′ ⊆ σn+1 as σn+1 only skips across nodes occupied by r∗〈e,i〉.

Now suppose, by way of contradiction, that n is the least such that Υσn = ∅. By

lemma .. we can’t have σn ∈ ξϕ∞. If σn ∈ n〈e〉,∞ then by inspection of rule .. in either

of the two possible cases Υσn 6= ∅. If σn ∈ r∗〈e,i〉,∞ then, as the corresponding sentences are

defined so ψ0 = ¬ψ1 at least one must be true. Moreover, by the definition of σn it must be

extended by both τ0 and τ1 so Υσn 6= ∅. But if σn ∈ rj〈e,i〉,∞ then n 6= 0 and σn−1 ∈ r∗〈e,i〉,∞
so j must be such that ψj is true meaning that the single extension of σn allowed by rule

.. must be in Υσn . By lemma .. this was an exhaustive list of the possibilities thus

contradicting our supposition.

Given that σn 6∈ Υσn it follows that f is the unique total function through T

satisfying all the requirements. The theorem follows from this by lemma ...
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Chapter 

Nonuniform Moduli

. Distance From Uniformity

Thanks to Slaman and Groszek’s proof of theorem .. we know that every degree

with a modulus of computation has a uniform modulus of computation. As any uniform

modulus of computation is ∆1
1 we trivially know that any degree deg d with a modulus has a

uniform modulus that is hyperarithmetic. Obviously we can construction hyperarithmetic

degrees who lack any simple uniform modulus, e.g., no uniform modulus for 0(α) will be

computable by any β <O α. But while any uniform modulus of 0(α) is very complex in

absolute terms corollary .. tells us that 0(α) has a uniform self-modulus, i.e., 0(α) has a

uniform modulus that’s extremely simple relative to 0(α). In fact every example we’ve seen

so far of a modulus has been a uniform modulus.

This naturally leads to the following question.

Question ... Is there an α < ωck1 so that if f is a modulus for X then there is a

f ′ ≤T f (α) with f ′ a uniform modulus of X

That is must every modulus for a set be ‘close’ to some uniform modulus for that

set. Given our interest in self-moduli we may as well make the question even more specific

and search for a self-modulus that is very non-uniform.

Question ... Is there an α < ωck1 so that if f is a self-modulus then there is a f ′ ≤T f (α)

with f ′ a uniform modulus of f

We show the existence of a non-uniform self-modulus and show that we can push
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the closest uniform modulus any integer number of jumps away giving a partial answer to

these questions.

Theorem ... For each n < ω there is a a self-modulus fn+2 such that no f̂ ≤T f (n) is

a uniform modulus for f .

. Preliminaries

.. Tools

Before we can even start thinking about the rest of the proof we need some means

to avoid having a nearby uniform modulus. We’ve already seen how to avoid having any

self-modulus at all by being Cohen generic but that result was too strong. We need to allow

the possibility of a self-modulus while pushing away uniform moduli. In light of theorem

.. we can understand this as saying we don’t want to be special, i.e., we aren’t an isolated

path on any Π0
n+2 tree. We accomplish this goal by trying to be sufficiently generic on some

perfect tree.

Lemma ... If g ∈ ωω is α+2 generic on some perfect tree T ⊂ ω<ω then any f ≤T g(α)

is not a uniform modulus of g.

Proof. Now suppose, by way of contradiction, that g is locally α+ 2 generic on T and that

Φj witnesses f = Φi(g(α)) is a uniform modulus of g. Now let ϕ1(h) be the Σ0
α+1 formula

asserting that there is some string τ above Φi(h(α)) witnessing that Φj(τ) computes the

wrong value. Formally,

ϕ1(h) =
(
∃τ � Φi(h(α))

)
(∃x)

(
Φj(τ ;x)↓|τ | 6= h(x)

)
As Φj witnesses that f is a uniform modulus of g we must have g 6|= ϕ1. As g is α + 2

generic on T there is an n1 such that gn1 
T ¬ϕ1.

Now let ϕ2(h) ∈ Σ0
α+2 assert that Φj(h) is total. Since g |= ϕ2 there is a n2 > n1

so that g�n2 
T ϕ2. By the perfectness of T , pick some g′ ⊃ g�n2 with g′ ∈ [T ] and g′

α + 2 locally generic on T but g 6= g′. Thus for some m > n2 g
′(m) 6= g(m). As g′ ⊃ g�n2

g′ 
T ϕ2 and g′ 
T ¬ϕ1. By the genericity of g′ we know f ′ = Φi(g′(α)) is total so pick

some h ∈ ωω with h� f and h� f ′. Since Ψ witnesses that f is a uniform modulus of g

for some k Φj(h�k )↓k = g(m) 6= g′(m). Thus g′ |= ϕ1. Contradiction.
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We will also need to define a canonical uniform self-modulus for 0(n) We do this

by extending the definition of θ1(x) from observation .. to cover arbitrary n.

Definition ...

• θ0x = 0

• θ1(x) = max
i≤x

min {t|Φx(∅;x)↓t }

• θn+1
s (x) = θn(x) + max

i≤x
min
s
{s ≤ t|Φ0(n̄)(i; i)↓s }

• θn+1(x) = lim
s→∞

θn+1
s (x)

Using the same reasoning deployed in section . we observe several properties of

these functions that will be useful later.

Observation ...

. θn(x) is increasing in both n and x.

. θm is computable in 0(m)

. θn is as uniform self-modulus of 0(n)

We also need to define some basic terminology to deal with constructing generic

functions.

Definition ...

• A string ε ∈ ω<ω ∪ ωω meets a set S ⊂ ω<ω (at x) if there is some τ ∈ S (|τ | = x)

with ε ⊇ τ .

• A string ε ∈ ω<ω ∪ ωω meets a function Γ : ω<ω 7→ ω<ω (at x) if ε ⊃ Γε�x for some x.

• A string densely meets a function f (set S) if it meets f (S) at infinitely many x.

.. Strategy

With this result in hand the difficulty in proving the theorem now lies in making

sure that fn+2 is actually a self-modulus while making it n + 2 generic on some tree. We

know that every set with a modulus has some uniform modulus so we will need to provide
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some non-uniform means for every ‘small’ g with g � fn+2 to compute fn+2 and a uniform

method for ‘large’ g to do so. By building fn+2 recursively in 0(n+2) we guarantee that

every g dominating θn+2, a uniform self-modulus for 0(n+2), computes fn+2. The trick is

dealing with the small g.

The idea here is to ensure that the locations where g is ‘small’ let us recover

information about fn+2. More specifically it is to encode fn+2 into the locations where

fn+2(x) < θm(x), i.e., fn+2 is m-small, for every m ≤ n + 2. Thus if g � fn+2 it must

(non-uniformly) fall into one of 2 (well really n + 2) categories. Either g �∗ θn+2 and

g ≥T 0(n+2) ≥T fn+2 or there is a maximal k < n + 2 with g �∗ θn+2. In the later case

g �∗ θk so g ≥T 0(k) and because we arrange θk+1(x) to admit a 0(k) approximation from

below g will be able to enumerate an infinite list of locations at which it is k + 1-small,

i.e., g(x) < θk+1(x). Because we code the information about f into these locations this will

enable g to compute fn+2.

The difficult part part of the proof is encoding information about fn+2 while still

retaining sufficient genericity. Our approach is to build fn+2 so that it lies on a sequence

of trees Tn+2 ⊆ Tn+1 ⊆ . . . ⊆ T1 each with the property that for any x there is at most

one string σ ∈ Tm of length x + 1 with σ(x) < θm(x). We can think of this as coding

information about the initial segments of fn+2 into the locations fn+2 is m-small using Tm
as a codebook. If we could build Tm+1 ≤T 0(m) then it would be relatively straightforward

to recover f from g � f . As described above for some k < n+ 2 g would compute 0(k) and

list off infinitely many locations with g(x) < θk+1(x) so if our codebook was computable

in 0(k) then g could simply use that information to decode initial segments of fn+2 from

the locations at which g (and hence f) is k + 1-small. However, we can’t hope to make

Tm+1 ≤T 0(m) since Tm+1 ≥T 0(m+1) by virtue of the uniqueness property.

The above approach to computing fn+2 fell short only by a single jump so by the

limit lemma if g � fn+2 and g(x) < θk+1(x) then g can make a guess fn+2�x for every

stage s in a manner that will eventually settle on the correct answer. Our basic strategy

then is to ensure that if s is large enough for g to notice that g(x) < θk+1(x) then s is also

large enough to give the correct answer for fn+2�x. Since the function fn+2 needs to satisfy

the same properties as fn+1 does plus some additional ones we will want to approach this

inductively, i.e, build the function f1 on T1 and f2 on T2 ⊂ T1. This isn’t too difficult if we

merely want to guarantee the uniqueness property but we must also make sure that fn+2

is n+ 2 generic on some perfect tree which we choose to make Tn+2 as well.
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Just as if we were building fn+2 to be Cohen generic, i.e., locally generic on ω<ω, we

will achieve genericity for fn+2 by building it using finite extensions which we try to extend

to meet Σ0
n+2 sets. To do this in the controlled fashion necessary to satisfy our constraints

while retaining the ability to use the work from fn+1 in fn+2 we define a function Γn+2

which will dictate how to extend the the initial segments of fn+2 to meet the appropriate

Σ0
n+2 sets. In doing so this function will incorporate the advice of Γk for k < n+ 2 so as to

also meet Σ0
n+1 sets. Our basic strategy will be to define Γn+2(σ) as the limit of Γn+2

s (σ)

and demand that Γn+2
s (σ) always look n+ 2-large at any stage it changes it’s value. Thus

at the stage g observes that g(x) is small the function Γn+2
s (σ) has already achieved it’s

limit for the appropriate σ. The details, however, are considerable more complex.

. Construction

We start with the definitions for fm and Tm in terms of the function Γm to illu-

minate the choices we make in the construction of Γm.

Definition ... Define fm = ∪ifmi where fm0 = ∅ and fmi+1 = Γm(fmi ).

Definition ... Tn ⊂ ω<ω is the smallest set containing ∅ such that

• If σ ∈ Tn then any σ′ extending σ with σ′ \ σ � θn is in Tn as well.

• If τ ∈ Tn then Γn(τ) ∈ Tn.

Note that Tm is not defined to be closed under initial segments. The tree formed

by closing Tm under initial segments would work just as well but by defining Tm we keep

the relation between Tm and Γm simpler and avoid book keeping problems later.

Now we are prepared to construct the function Γn = lims→∞ Γn+1
s (σ). The basic

approach is to let Γn+1
s (σ) search for s steps using 0(n) as an oracle trying to find an

extension of σ that looks (n + 1)-large at stage s and that meets the next Σ0
1

(
0(n+1)

)
set.

However, there are several complications which we will explain along the way.

.. Building Γn

Define Γ0(σ) = σ for every σ. To define Γn+1(σ) assume that for all k̄ ≤ n Γk̄

has been defined to be a total function and construct Γn+1. We do so by offering a guess,

Γn+1
s (σ), at Γn+1σ for every stage s and then setting Γn+1(σ) = lims→∞ Γn+1

s (σ).
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Construction ... If s ≤ |σ| set Γm̄s (σ) = σ. Otherwise assume that Γm̄t is defined on all

arguments for t ≤ s and Γm̄s+1(τ) is defined for all τ with pτq < pσq and compute Γm̄s+1(σ)

by executing the following steps in order unless told to stop.

Step : For each τ with pτq < pσq examine Γn+1
s (τ) and Γn+1

s+1 (τ). If for any such τ we

have Γn+1
s (τ) 6= Γn+1

s+1 (τ) then set Γn+1
s+1 (σ) = σ otherwise go to the next step.

Step : If Γn+1
s (σ) ⊂ Γn+1

s+1 (τ) for some τ with pτq < pσq leave Γn+1
s+1 (σ) equal to

Γn+1
s (σ) and stop. Otherwise continue to the next step.

In order to be appropriately generic we must guarantee that if σ can be

extended on Tn+1 to meet the next Σ0
n+1 set then Γn+1(σ) meets this set.

However, since we require Γn+1(σ) to look big when enumerated there

is the risk that by the time Γn+1(σ) realizes it can meet a certain set it

is no longer able to do so. We therefore adopt the solution of allowing

Γn+1
s1+1(σ) to swallow Γn+1

s1 (σ′) where σ′ ⊇ σ even if this would otherwise

not be allowed. Although this weakens our assumption that we only

select extensions that look big at the time no problem will result since

we recover the same function if g believes that the true path is given by

Γn+1
s0 (σ) = Γn+1

s1 (σ).

Step : If any τ with pτq < pσq Γn+1
s (τ) 6= Γn+1

s+1 (τ) then reset Γn+1
s (σ) to σ.

We always want to make sure the earlier strings reach their limits first so

we can assume that we have the correct value for Γτ when computing Γσ

with pσq > pτq.

Step : If Γn+1
s (σ)(|σ|) < θn+1(|σ|)[s + 1] then set Γn+1

s+1 (σ) = σ and stop. Otherwise

continue to the next step.

Step : If for some τ with pτq < σ and x ≥ |σ| with Γn+1
s+1 (τ)(x),Γn+1

s (σ)(x) are

both defined and less than θn+1(x)[s + 1] and Γn+1
s+1 (τ)�x | Γn+1

s (σ)�x then set

Γn+1
s+1 (σ) = σ. Otherwise go on to the next step.

Guarantees that at most one path on the tree is small at any location.

Step : Look for the first τ ⊃ σ with pτq ≤ s+ 1 such that
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. There is a sequence of strings σk, νk

τ = σn ⊃ νn−1 ⊃ σn−1 ⊃ νn−2 . . . ⊃ ν1 ⊃ σ1 ⊃ σ

where νk is either Γn(σk) or Γn+1
s (σk).

The segments νk allow the inclusion of segments from Γn and swallowed

segments from earlier stages.

. If νk+1 = Γn(σk) and νk+2 = Γn(σk+1) then σk+1 6= ∅.

We never want to include two applications of Γn adjacent to each other

lest we create a long stretch below θn+1 that doesn’t include any locations

x where Γn+1(σ)(x) ≯ θ
(
sx) when enumerated.

. If τ(x) < θn(x) and x ≥ |σ| then x ∈ dom νk \ σk for some k with

νk = Γn(σk)

. If τ(x) < θn+1(x)[s+ 1] then x ∈ domσ or x ∈ dom νk \ σk for some k

So long as x doesn’t fall in the exceptions this will let us recover Γn+1(σ)

from any stage t at which Γn+1(σ)(x) < θ
(
tx).

. For some i ≤ s + 1, τ meets W0(n)

i [s + 1] but σ does not and there is no

τ ′ with this property for some j < i.

We need to meet the Σ0
n+1 sets to make ourselves locally generic.

If such a τ is found set Γn+1
s+1 (σ) = τ otherwise leave Γn+1

s+1 (σ) = Γn+1
s (σ).

.. Construction Properties

We begin by verifying some basic properties of our construction above.

Lemma ... Suppose f ∈ ωω densely meets Γm. Then for every k < m f densely meets

Γk

We prove this simultaneously we the next lemma.

Lemma ... Γm(σ) is a total function computable in 0(m) with Γm(σ) 6= σ.





Proof. Inductively assume that lemma .. and lemma .. hold for all k ≤ n. To show

they hold for n+ 1 suppose, by way of contradiction, that Γn+1 is not total and let σ be the

string with the least code so that lims→∞ Γn+1
s (σ) diverges. Hence we can pick t be a stage

large enough that for any τ with pτq < pσq Γn+1
s (τ) has permanently achieved it’s limit and

set r = max{τ |pτq<pσq}|Γ
n+1
t (τ)|. Pick t′ > t such that θn+1(x)[t′] has also permanently

achieved it’s limit. Now if s > t′ the only step in the construction able to change the value

of Γn+1
s (σ) is step  but that doesn’t happen unless it can extend to meet a Σ0

n+1 set with a

smaller index. Since the integers are well-ordered this can only happen finitely many times.

Contradiction.

Hence Γn+1 is total and inspection of the construction shows that Γn+1
s ≤T Γn ⊕

0(n) thus by the limit lemma [] and the inductive hypothesis we know Γn+1 ≤T 0(n+1).

Furthermore we can conclude Γn(σ) 6= σ since there is always some Σ0
n set that σ could be

extended to meet. This leaves only lemma .. to verify. To see this observe that since

Γn ≤T 0(n) there is an Σ0
n set consisting only of those strings meeting Γn at least k times.

As step  always allows Γn+1 to include applications of Γn if f densely meets Γn+1 it also

densely meets Γn which by induction establishes lemma .. .

Corollary ... Tm ≤T 0(m) and fm ≤T 0(m)

Proof. Follows from the definition and lemma ...

Lemma ... If m < n then Tm ⊃ Tn

Proof. Suppose this holds for n we show it also holds for n + 1. Note that it is sufficient

to show that Tn ⊃ Tn+1. If this doesn’t hold by the well-foundness of ⊂ on ω<ω pick some

τ ∈ Tn+1, τ 6∈ Tm but if σ ( τ then σ ∈ Tn+1 =⇒ σ ∈ Tn. If there is some such σ so

that τ \σ � θn+1 then as observation .. tells us that θn+1 � θn so by definition τ ∈ Tn.
This would be a contradiction so by our supposition we can conclude that there is some

σ ∈ Tn+1 with τ = Γn+1(σ). Yet by parts  and  of step  τ = σn ⊃ νn−1 ⊃ . . . ⊃ σ where

each σk \ νk−1 � θn and νk = Γn(σn) hence τ ∈ Tn. Hence Tn ⊃ Tn+1

. Verifying The Theorem

.. Recovering f

Lemma ... If x > |σ|, |τ | and Γns (τ)(x),Γns (σ)(x) < θns (x) then Γns (τ)�x = Γns (σ)�x
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Proof. Suppose this fails and let Γns (σ)(x),Γns (τ)(x) witness with pτq < pσq. By step  of

the construction this can only occur if Γns−1(σ) 6= Γns (σ). However, by

Lemma ... If x > |σ|, |τ | and Γn(τ)(x),Γn(σ)(x) < θn(x) then Γn(τ)�x = Γn(σ)�x

Proof. Suppose this fails and let Γn(σ)(x),Γn(τ)(x) witness. Let t be large enough that

Γn(σ)[t],Γn(τ)[t] have achieved their limits and Γn(σ)(x)[t],Γn(τ)(x)[t] < θn(x)[t]. Since

Γnt (τ)�x 6= Γnt (σ)�x the construction would have continued past step  and step  of the

construction would have reset Γn(σ) or Γn(τ)(x) at stage t. ⇒⇐

We now observe that f is a self-modulus.

Notation ... DefineLn (x) = 1 + sup|σ|<x|Γn(σ)| for n > 0 and Γ0(x) = 1.

Lemma ... Suppose for every m ≤ n there are only finitely many x satisfying(
∀x′ ∈ [x, Lm (x)]

) (
g(x′) < θm+1(x′)

)
(...)

then g ≥T 0(n+1).

Proof. Suppose, by way of induction, this holds for every n′ < n and let g satisfy the

hypothesis of the lemma for n. By our inductive assumption g ≥T 0(n). Thus by lemma

.. Ln (≤T) g. Let x0 be large enough that no x > x0 satisfies (...) form = n. Then for

x > x0, minx′∈[x,Lm(x)] g(x′) ≥ minx′∈[x,Lm(x)] θ
n+1(x′) ≥ θn+1(x). Hence g computes some

function g′ � θn+1 which by observation .. is sufficient to show that g ≥T 0(n+1).

Lemma ... If g � fn+1 then g ≥T fn+1.

Proof. If there are only finitely many x satisfying (...) for m ≤ n then g ≥T 0(n+1) ≥T f

so we suppose that m ≤ n is the smallest integer for which the hypothesis fails. To compute

fn+1�x0 we computably search in 0(m) ≤T g for some x > x0 and some s so that(
∀x′
) (
x ≤ x′ ≤ Lm (x) =⇒ g(x′) < θm+1

s (x′)
)

and then pick the string σ with minimal code so that x ≥ |σ| such that Γm+1
s (σ)(x) <

θm+1
s (x). We claim that f�x = Γm+1

s (σ).

Now by part  of step  and the definition of fn+1 there is some σ′ so that |σ′| < x

and |Γm+1(σ′)| ≥ Lm (x) where Γm+1(σ′) ⊂ fn+1 and f(x) > θm+1
t (x′) at a stage where

Γm+1
t (σ′) = Γm+1(σ′). This holds since, by construction, the only way for f to dip below
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θm+1 is by inclusion of a segment given by Γm+1 and Lm is too long to be contained in an

inclusion of a single segment Γm and no two such segments occur consecutively. Given that

θns (x′) > θnt (x′) for all x′ between x and Lm (x) we know that s > t. Therefore for all τ

with pτq < pσ′q we know by step  that Γm+1
s (τ) = Γm+1(τ) since otherwise they would

have been reset. Hence by lemma .. we know that Γm+1(σ) ⊆ Γm+1(σ′). Therefore

Γm+1
s (σ) ⊂ f . Thus no matter which case we consider g ≥T f .

.. Genericity

The construction of Γm does everything possible to meet the least Σ0
m set still

unmeet so for any Σ0
m set if ν ∈ Tm meets Γm enough times then ν should meet this set or

witness that it is impossible to meet. We can make this idea precise as follows.

Lemma ... Suppose τ is in Tn+1 and τ meets Γn+1 at least j times then either Γn+1(τ)

meets W0(n+1)

j [|τ |] or no τ ′ ⊃ τ with τ ′ ∈ Tn+1 meeting W0(n)

j .

Proof. Inductively assume that the lemma holds for every i < j and suppose that τ doesn’t

meet W0(n)

j . By step  in the construction either for some i < j Γn+1(τ) meets W0(n)

|τ ′|,i but

τ does not or for there is a stage t so that every later stage s > t the construction no σ ⊃ τ
meeting W0(n)

i [s] satisfies the conditions in step  at stage s. By our inductive hypothesis

the first possibility is ruled out.

But if there were a σ ∈ Tn+1 with σ ⊃ Γn+1(τ) meeting W0(n+1)

i then σ meets the

conditions in step  for τ so Γn+1(τ) must meet W0(n)

j . Contradiction.

If we were dealing with Cohen genericity (i.e. Tm was computable) this lemma

would be enough to show that any real in [Tm] densely meeting Γm was m generic. However,

in general an f ∈ [T ] which either meets or strongly avoids on T (no extension on T of some

initial of f meets) every Σ0
m set doesn’t have to be very T generic at all. This remains

true even though our notion of being k locally generic on T only requires we force every

Σ0
k formula or it’s negation using the local forcing relation not the Σ0

k(T ) formulas. Thus

we need some stronger principle to achieve genericity. The intuition that we deploy is

that since we form Tn+1 ⊂ Tk as the result of trying to meet Σ0
n+1 sets on Tk the local

forcing relation on Tn+1 will be substantially similar to the local forcing relation on Tk.

To transform this intuition into a solid proof we introduce a relation 
sk which we will

demonstrate is equivalent to the standard forcing relation for sufficiently generic reals on
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Tk. Note that for the rest of this chapter we adopt the common notational convenience of

identifying (syntactically) Π0
k sentences with the negation of sentences in Σ0

k for the purpose

of working with the forcing relation.

Definition ... We define the relation σ 
sm ϕ for σ ∈ Tm and ϕ ∈ Σ0
m∪Π0

m by induction

on m.

. If ϕ ∈ Σ0
0 = Π0

0 then σ 
s0 ϕ ⇐⇒ σ |= ϕ.

. If ϕ ∈ Σ0
n ∪Π0

n for n < m then σ 
sm ϕ ⇐⇒ σ 
sn ϕ.

. If ϕ properly in Σ0
m+1 and ϕ = ∃nψ(n) then

σ 
sm+1 ϕ ⇐⇒ (∃n)σ 
sm ψ(n) (...)

. If ϕ properly in Π0
m+1, ϕ = ¬ψ and j is a canonically given index for W0(m)

j ={
τ
∣∣τ 
sm+1 ψ

}
then

σ 
sm+1 ¬ϕ ⇐⇒
(
@σ′ ⊃ σ

) (
σ′ ∈ Tm+1 ∧ σ′ 
sm+1 ϕ

)
∧

σ meets Γm+1 at least j times.

We adopt the same notations for 
sm as we do for genuine forcing. In particular if

f ∈ ωω then f 
sm ϕ if and only if for some n f�n
sm ϕ.

Lemma ... Not both σ 
sm ϕ and σ 
sm ¬ϕ.

Proof. By part  of the definition of 
sm it’s safe to assume that ϕ is properly in Σ0
m ∪Π0

m.

But if either σ 
sm ϕ or σ 
sm ¬ϕ hold then σ ∈ Tm. Hence σ 
sm ϕ is a direct contradiction

to the requirement for σ 
sm ¬ϕ.

Lemma ... The relation σ 
sm ϕ for ϕ ∈ Σ0
m∪Π0

m is uniformly computable in 0(m) and

hence well defined.

Proof. The only step that does not follow by a trivial induction is dealing with Π0
m+1

sentences but this follow from lemma .. since if ϕ ∈ Σ0
m+1 and σ meets Γm+1 at least j

times then σ 
sm+1 ¬ϕ ⇐⇒ σ¬ 
sm+1 ϕ.

Lemma ... If f ∈ [Tm] densely meets Γm then for all ϕ ∈ Σ0
m either f 
sm ϕ or

f 
sm ¬ϕ.
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Proof. This is trivial for m = 0 so we suppose the lemma holds for all m ≤ n and show it

holds for m = n+ 1 as well.

If f is as in the statement of the lemma for m = n+1 then by lemma .. f must

densely meet Γn. Therefore, as lemma .. tells us Tn+1 ⊂ Tn if ψ ∈ Σ0
n the inductive

hypothesis implies either f 
sn+1 ψ or f 
sn+1 ¬ψ. Now let ϕ = (∃k)ψ(k) for some ψ ∈ Π0
n

and S = {σ ∈ Tn|(∃k) (σ 
sn ψ(k))}. By lemma .. the relation 
sn is computable in 0(n)

as is Tn hence S is a Σ0
n+1 set. If f meets S then for some k f 
sn ψ(k) and by definition

f 
sn+1 ϕ so suppose not. Let j be the canonical index such that W0(m)

j = S and an l large

enough that f�l meets Γn+1 at least j+1 times. By lemma .. it follows that no σ ∈ Tn+1

with σ ⊃ f�l meets S. Thus f 
sn+1 ¬ϕ.

Lemma ... If f ∈ [Tm] densely meets Γm then

. If f is m locally generic on Tm then for any ϕ ∈ Σ0
m ∪Π0

m, f 
∗Tm ϕ ⇐⇒ f 
sm ϕ.

. If f ∈ [Tm+1] and f is m locally generic on Tm+1 then f is m locally generic on Tm

. If f ∈ [Tm+1] and f is m locally generic on Tm then f is m locally generic on Tm+1.

Proof. We prove these claims via simultaneous induction on m.

. Trivially this claim holds for m = 0 so we inductively assume the lemma holds for

n and show it holds for n + 1. Now suppose that f is n + 1 locally generic on

Tn+1 then by part  applied to n we can infer that f is n locally generic on Tn so

f 
∗Tn ϕ ⇐⇒ f 
sn ϕ for ϕ ∈ Σ0
n ∪Π0

n. But for ϕ ∈ Σ0
n ∪Π0

n, f 
sn ϕ ⇐⇒ f 
sn+1 ϕ

hence

f 
∗Tn+1
ϕ ⇐⇒ f |= ϕ ⇐⇒ f 
∗Tn ϕ ⇐⇒ f 
sn ϕ ⇐⇒ f 
sn+1 ϕ (...)

Now assume that ϕ is properly in Σ0
n+1 ∪Π0

n+1 and f 
∗Tn+1
ϕ. To see that f 
sn+1 ϕ

consider theses cases:

Case : ϕ = ∃xψ(x)

There is some l and x so that f�l 
∗Tn+1
ψ(x) and hence f 
sn ψ(x)

and thus by definition f 
sn+1 ϕ.
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Case : ϕ = ¬ψ
There is some l so that

(∀σ ∈ Tn+1)
(
σ ⊃ f�l =⇒ ¬σ 
∗Tn+1

ψ
)

(...)

Hence by the previous case

(∀σ ∈ Tn+1)
(
σ ⊃ f�l =⇒ ¬σ 
sn+1 ψ

)
(...)

which by definition yields that f 
sn+1 ϕ.

But as f is n+1 locally generic on Tn+1 for every formula ϕ ∈ Σ0
n∪Π0

n we have either

f 
∗Tn+1
ϕ ∧ f 
sn+1 ϕ or f 
∗Tn+1

¬ϕ ∧ f 
sn+1 ¬ϕ. Since by .. we can’t have both

f 
sn+1 ϕ and f 
sn+1 ¬ϕ the relations 
∗Tn+1
and 
sn+1 must agree on f .

. We assume that part  holds and prove this claim by induction on the complexity

of the formulas being forced. In particular we note that f 
∗Tm+1
φ =⇒ f 
∗Tm φ

trivially holds if φ ∈ Σ0
0 ∪Π0

0 so we assume that it holds for φ ∈ Σ0
n ∪Π0

n and observe

it also holds for φ properly in Σ0
n+1 ∪ Π0

n+1. To see this fix such a φ and suppose

f 
∗Tm+1
φ and then demonstrate f 
∗Tm φ by considering the following cases.

Case : φ = ∃xψ(x)

For some x, f 
∗Tm+1
ψ(x) and by our inductive hypothesis f 
∗Tm ψ(x).

Case : φ = ¬ϕ
For some l

(@σ ⊃ f�l )
(
σ ∈ Tm+1 ∧ σ 
∗Tm+1

ϕ
)

Let j be a canonical 0(n+1) index for S =
{
σ ∈ Tn+1

∣∣σ 
sn+1 ϕ
}

and pick

l′ large enough that f�l′ has met Γn+1 at least j + 1 times. By lemma

.. it follows that no extension of f�l′ meets S and thus f�l′ 
sn+1 ¬ϕ.

By part  it follows that f�l′ 
∗Tm ¬ϕ.

. Inductively suppose that f 
∗Tm φ =⇒ f 
∗Tm+1
φ for φ ∈ Σ0

k ∪ Π0
k with k ≤ n < m.

So suppose φ properly in Σ0
n+1 ∪Π0

n+1 and f 
∗Tm φ we show that f 
∗Tm+1
φ.

Case : φ = ∃xψ(x)

For some x, f 
∗Tm ψ(x) so by the inductive hypothesis f 
∗Tm+1
ψ(x)

thus f 
∗Tm+1
φ.
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Case : φ = ¬ϕ
For some l

(∀σ ⊇ f�l )
(
σ ∈ Tm =⇒ ¬σ 
∗Tm ϕ

)
(...)

Now suppose, by way of contradiction(
∃σ′ ∈ Tm+1

) (
σ′ ⊇ f�l ∧σ′ 
∗Tm+1

ϕ
)

(...)

Let f ′ ⊃ σ′ be m locally generic on Tm+1 where σ′ witnesses (...).

Since f ′ 
∗Tm+1
ϕ by genericity f ′ |= ϕ but by part  f ′ is also m locally

generic on Tm hence f ′ 
∗Tm ϕ. Hence

(∃σ ∈ Tm)
(
f�l⊂ σ ⊂ f ′ ∧ σ 
∗Tm ϕ

)
(...)

This contradicts (...) hence(
∀σ′ ∈ Tm+1

) (
σ′ ⊇ f�l =⇒ ¬σ′ 
∗Tm+1

ϕ
)

(...)

By definition of strong forcing we can thus conclude f 
∗Tm+1
ϕ.

Lemma ... If f ∈ [Tm] and f densely meets Γm then f is m locally generic on Tm.

Proof. Assume, by way of induction, this claim holds for n with n + 1 = m. Given f as

in the lemma .. we can apply the inductive hypothesis to conclude that f is n locally

generic on Tn. Making use of number  of lemma .. we can conclude that f is n locally

generic on Tn+1. Now fix ϕ properly in Σ0
n+1 with ϕ = ∃xψ(x). By lemma .. we need

only consider the following two cases.

Case : f 
sn+1 ϕ

For some x, f 
sn ψ(x) and by number  of lemma .. we can conclude

that f 
∗Tn ψ(x) and by number  of the same theorem we can conclude

f 
∗Tn+1
ψ(x) and thus f 
∗Tn+1

ϕ.

Case : f 
sn+1 ¬ϕ
For some l

(@σ ∈ Tn+1)
(
σ ⊃ f�l =⇒ ¬σ 
sn+1 ϕ

)
(...)
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Now suppose, for a contradiction, that

(
∃σ′ ∈ Tn+1

) (
σ′ ⊃ f�l ∧σ 
∗Tn+1

ϕ
)

(...)

If σ′ witnesses this then pick some f ′ n+1 locally generic on Tn+1 with f ′ ⊃ σ′.
By number  of lemma .. we can conclude that f ′ 
sn+1 ϕ but then for

some σ

f�l⊂ σ ⊂ f ′ ∧ σ ∈ Tn+1 ∧ σ 
sn+1 ϕ (...)

This is a contradiction hence we can conclude that f 
∗Tn+1
¬ϕ

Lemma ... fm is m locally generic on Tm.

Proof. Immediate from the definition of fm and lemma ...

Proof. By lemma .. we know that fn+2 is a self-modulus and by lemma .. that fn+2

is n locally generic on some perfect tree. Hence by .. no f∗ computable by n jumps of

fn+2 is a uniform modulus of fn+2. As n was arbitrary this demonstrates the theorem.
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