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Motivation

Combinatorial operations are almost never well-defined on Turing
degrees

For instance, given degrees 𝐚, 𝐛 we can choose representatives 𝐴, 𝐵 so
that 𝐴 ∩ 𝐵 = ∅ or so that 𝐴 ∩ 𝐵 ∈ 𝐚 ∨ 𝐛

So the operation ∩ is never well-defined on (non-trivial) Turing
degrees. But what about other basic set-theoretic operations such as
Δ (symetric difference)?
In this talk we’ll investigate the class of degrees for which Δ is
well-defined:

That is, the class of degrees 𝐚, 𝐛, 𝐜 such that if 𝐴 ∈ 𝐚, 𝐵 ∈ 𝐛 then
𝐴 Δ 𝐵 ∈ 𝐜.
Note that (by choosing 𝐴 ⊂ {2𝑥 ∣ 𝑥 ∈ 𝜔}, 𝐵 ⊂ {2𝑥 + 1 ∣ 𝑥 ∈ 𝜔}) we
must have 𝐜 = 𝐚 ∨ 𝐛.
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Easy Failure

Proposition
If 𝑋, 𝑌 , 𝑍 are independent Turing degrees then 𝐴 = 𝑋 ⊕ 𝑌 ⊕ ∅ and
𝐵 = 𝑋 ⊕ ∅ ⊕ 𝑍 are independent Turing degrees without a well-defined
symetric difference.

Where the set 𝒮 of Turing degrees is independent if
(∀𝐴 ∈ 𝑆) (𝐴 ≰𝐓 ⨁ 𝒮 ⧵ {𝐴}).

Just definition chasing:
Note that 𝐴 Δ 𝐵 = (𝑋 Δ 𝑋) ⊕ (𝑌 Δ ∅) ⊕ (∅ Δ 𝑍) = ∅ ⊕ 𝑌 ⊕ 𝑍.
So 𝐴 Δ 𝐵 ≱𝐓 𝑋 hence 𝐴 Δ 𝐵 ≇𝐓 𝐴 ⊕ 𝐵 ≡𝐓 (𝐴 ⊕ ∅) Δ (∅ ⊕ 𝐵).
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Easy Success

Proposition

If (for all 𝐜)
(𝐶) (𝐜 ∨ 𝐚 ≥ 𝐛) ∧ (𝐜 ∨ 𝐛 > 𝐚) ⟹ 𝐜 ≮ 𝐚 ∨ 𝐛
and 𝐚 ≠ 𝐛 then 𝐚 Δ 𝐛 is well-defined.

So there is no degree 𝐜 < 𝐚 ∨ 𝐛 with:

𝐚 𝐛

𝐚 ∨ 𝐛

𝐜 𝐚

𝐛 = 𝐚 ∨ 𝐛

𝐜
But 𝐴 Δ 𝐵 ∈ 𝐜 for some such 𝑐 so 𝐴 Δ 𝐵 ∈ 𝐚 ∨ 𝐛
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In 𝒟

Proposition
There are degrees 𝐚, 𝐛 for which 𝐚 Δ 𝐛 is well-defined.

Let 𝐚 be a minimal degree and 𝐛 be a strong minimal cover of 𝐚 (any
degree strictly below 𝐛 is below 𝐚).
These degrees trivially satisfy 𝐶 ;

𝐚

𝐛 = 𝐚 ∨ 𝐛

𝐜
As any 𝐜 < 𝐛 must actually satisfy 𝐜 ≤ 𝐚

What about incompatible degrees?
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Incompatible degrees in 𝒟

Proposition
There are incompatible degrees 𝐚, 𝐛 for which 𝐚 Δ 𝐛 is well-defined.

It is possible to embed the diamond as an initial segment of the
Turing degrees[Sa63]

𝟘

𝐚 𝐛

𝐚 ∨ 𝐛

This satisfies (𝐶). Remember:

(𝐶) (𝐜 ∨ 𝐚 ≥ 𝐛) ∧ (𝐜 ∨ 𝐛 > 𝐚) ⟹ 𝐜 ≮ 𝐚 ∨ 𝐛
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Working in ℛ

So what about working in the r.e. degrees (ℛ)?

Density means we can’t hope to build the strong minimal covers we
used above.

But we can still satisfy 𝐶 if none of the degrees below 𝐚 ∨ 𝐛 can join
both 𝐚 and 𝐛 up to 𝐚 ∨ 𝐛.

Peter M. Gerdes Computability and the Symmetric Difference Operator NERDS Fall 2021 8 / 30



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Compatible Degrees in ℛ

Proposition
There are compatible degrees 𝐚, 𝐛 in ℛ for which 𝐚 Δ 𝐛 is well-defined.

There is a pair of recursively enumerable degrees 𝐚 < 𝐛 so that there
is no Turing degree 𝐜 < 𝐛 such that 𝐚 ∨ 𝐜 = 𝐛 [SS89, Co89].

𝐚

𝐛 = 𝐚 ∨ 𝐛

𝐜

What about incompatible r.e. degrees?
We’ll investigate this case in the next section.
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Incompatible degrees in ℛ

Theorem
There are (Turing) incomparable r.e. sets 𝐴 and 𝐵 such that for any 𝐴
and 𝐵 with 𝐴 ≡𝐓 𝐴 and 𝐵 ≡𝐓 𝐵, we have 𝐴 Δ 𝐵 ≡𝐓 𝐴 ⊕ 𝐵.

Requirements

Φ𝑒(𝐴) ≠ 𝐵𝒫 𝐴
𝑒 :

Φ𝑒(𝐵) ≠ 𝐴𝒫 𝐵
𝑒 :

Φ𝑖(𝐴𝑖) = 𝐴 ∧ Φ𝑗(𝐵𝑗) = 𝐵 ⟹ Γ𝑖,𝑗(𝐴𝑖 Δ 𝐵𝑗) = 𝐴 ⊕ 𝐵ℛ𝑖,𝑗 :

𝑋𝑖,𝑠(𝑧) =
{

↑ if (∃𝑦 < 𝑧)𝑋𝑖,𝑠(𝑦)↑
Φ𝑖,𝑠(𝑋𝑠; 𝑧) otherwise

Where:

𝑋𝑖(𝑧) = lim
𝑠→∞

𝑋𝑖,𝑠(𝑧)
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Avoiding Index Profusion

Suppose there were 𝑒, 𝑒′, 𝑘, 𝑘′ with Φ𝑒′(𝐴𝑒) = 𝐴, Φ𝑘′(𝐵𝑘) = 𝐵 and
𝐴𝑒 Δ 𝐵𝑘 ≇𝐓 𝐴 ⊕ 𝐵.

Define 𝑖 (likewise 𝑗 replacing 𝑒, 𝑒′ with 𝑘, 𝑘′) so that:

Φ𝑖(𝑋; 𝑛) =

⎧⎪
⎪
⎨
⎪
⎪⎩

1 − 𝑋(0) if 𝑛 = 0
Φ𝑒(𝑋; 𝑛) if 𝑛 ≠ 0 ∧ 𝑋(0) = 𝐴(0)
Φ𝑒′(𝑌 ; 𝑛) if 𝑛 ≠ 0, 𝑋(0) ≠ 𝐴(0), ∧

(∀𝑛) (𝑌 (𝑛) = 𝑋(𝑛 + 1))

Then 𝐴𝑖, 𝐵𝑗 would witness failure with Φ𝑖(𝐴𝑖) = 𝐴, Φ𝑗(𝐵𝑗) = 𝐵.

As 𝐴𝑖, 𝐵𝑗 agree with 𝐴𝑒, 𝐵𝑘 except possibly at 0.
Can use this anytime we have requirements on sets of same degree to
avoid index profusion.
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Meeting 𝒫 𝐴
𝑒 , 𝒫 𝐵

𝑒

Requirement

𝒫 𝐴
𝑒 : Φ𝑒(𝐴) ≠ 𝐵

We reserve some canidate (ball) 𝑥𝐴
𝑒 which we keep out of 𝐵 unless we

see Φ𝑒(𝐴; 𝑥𝑒) = 0.
We place requirements on (downward growing) Π0

2 tree and let
possible canidates trickle down.
Positive requirements grab and hold passing ball when they need a
witness otherwise let canidates flow past to lower priority
requirements.

This allows higher priority nodes to force canidates for lower priority
nodes to be spaced out as needed.
Note that we throw away all balls when truepath moves to their left.
This ensures that anytime a ball enters 𝐴 or 𝐵 all larger balls are
discarted.
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Framework for meeting ℛ𝑖,𝑗

Requirement

ℛ𝑖,𝑗 : Φ𝑖(𝐴𝑖) = 𝐴 ∧ Φ𝑗(𝐵𝑗) = 𝐵 ⟹ Γ𝑖,𝑗(𝐴𝑖 Δ 𝐵𝑗) = 𝐴 ⊕ 𝐵

We conceptualize building Γ𝑖,𝑗 via enumeration of axioms (always with
large use).
ℛ𝑖,𝑗 works to build Γ𝑖,𝑗 at stages where length of agreement for
Φ𝑖(𝐴𝑖) = 𝐴 ∧ Φ𝑗(𝐵𝑗) = 𝐵 increases.
If 𝑥 enters 𝐴𝑠 ⊕ 𝐵𝑠 we enumerate an axiom putting 𝑥 into
Γ𝑖,𝑗(𝐴𝑖 Δ 𝐵𝑗) for all inputs.
Enough to show that if 𝑥 ∉ 𝐴 ⊕ 𝐵 then we enumerate axiom saying
so ( i.e. Γ𝑖,𝑗(𝐴𝑖 Δ 𝐵𝑗 ; 𝑥 = 0))

Imagine we could hold 𝐵𝑗 fixed. How could we meet ℛ𝑖,𝑗?
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Hypothetically holding 𝐵𝑗 fixed

If 𝐵𝑗 was fixed then:

If we see Φ𝑖,𝑠(𝐴𝑖,𝑠; 𝑥) = 0 (so 𝑥 ∉ 𝐴 if computation valid) then
enumerate axiom saying Γ𝑖,𝑗(𝐴𝑖,𝑠 Δ 𝐵𝑗,𝑠; 2𝑥) = 0 (e.g. guessing
𝐴𝑠(𝑥) = 0).
If later 𝑥 enters 𝐴 then 𝐴𝑖 and thus 𝐴𝑖 Δ 𝐵𝑗 must change below use
(large at 𝑠 ) cancelling axiom.

DANGER! (As 𝐵𝑗 isn’t fixed)
Suppose at 𝑠′ > 𝑠, 𝑥̂ enters 𝐴𝑖 (restoring agreement between
Φ𝑖,𝑠′(𝐴𝑖,𝑠′) and 𝐴𝑠′)

But then at 𝑠″ > 𝑠′, 𝑥̂ enters 𝐵𝑗 so 𝐴𝑖,𝑠″ Δ 𝐵𝑗,𝑠″ agrees with
𝐴𝑖,𝑠 Δ 𝐵𝑗,𝑠 on earlier use.
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Hypothetically holding 𝐵𝑗 fixed

If 𝐵𝑗 was fixed then:

If we see Φ𝑖,𝑠(𝐴𝑖,𝑠; 𝑥) = 0 (so 𝑥 ∉ 𝐴 if computation valid) then
enumerate axiom saying Γ𝑖,𝑗(𝐴𝑖,𝑠 Δ 𝐵𝑗,𝑠; 2𝑥) = 0 (e.g. guessing
𝐴𝑠(𝑥) = 0).
If later 𝑥 enters 𝐴 then 𝐴𝑖 and thus 𝐴𝑖 Δ 𝐵𝑗 must change below use
(large at 𝑠 ) cancelling axiom.

DANGER! (As 𝐵𝑗 isn’t fixed)
Suppose at 𝑠′ > 𝑠, 𝑥̂ enters 𝐴𝑖 (restoring agreement between
Φ𝑖,𝑠′(𝐴𝑖,𝑠′) and 𝐴𝑠′)

But then at 𝑠″ > 𝑠′, 𝑥̂ enters 𝐵𝑗 so 𝐴𝑖,𝑠″ Δ 𝐵𝑗,𝑠″ agrees with
𝐴𝑖,𝑠 Δ 𝐵𝑗,𝑠 on earlier use.
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Full Strategy

Above outcome guessing Φ𝑖(𝐴𝑖) = 𝐴 ∧ Φ𝑗(𝐵𝑗) = 𝐵 we space out
witnesses 𝑥𝐴

𝑘 , 𝑥𝐵
𝑘 so only one of 𝐴𝑖, 𝐵𝑗 can change at a time.

𝐴

𝐴𝑖

𝐵

𝐵𝑗

𝑥𝐴
1

𝑦1=𝖚[Φ𝑖(𝐴𝑖;𝑥𝐴
1 )]

Reserve 𝑥𝐴
1 to meet 𝒫 𝐴

1

If 𝑥𝐴
1 enters 𝐴 then 𝐴𝑗 changes below 𝑦1 = 𝖚 [Φ𝑖(𝐴𝑖; 𝑥𝐴

1 )]
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Full Strategy

Above outcome guessing Φ𝑖(𝐴𝑖) = 𝐴 ∧ Φ𝑗(𝐵𝑗) = 𝐵 we space out
witnesses 𝑥𝐴

𝑘 , 𝑥𝐵
𝑘 so only one of 𝐴𝑖, 𝐵𝑗 can change at a time.

𝐴

𝐴𝑖

𝐵

𝐵𝑗

𝑥𝐴
1

𝑦1=𝖚[Φ𝑖(𝐴𝑖;𝑥𝐴
1 )]

𝑦1

Want to preserve 𝐵𝑗 below 𝑦1 = 𝖚 [Φ𝑖(𝐴𝑖; 𝑥𝐴
1 )]
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Full Strategy

Above outcome guessing Φ𝑖(𝐴𝑖) = 𝐴 ∧ Φ𝑗(𝐵𝑗) = 𝐵 we space out
witnesses 𝑥𝐴

𝑘 , 𝑥𝐵
𝑘 so only one of 𝐴𝑖, 𝐵𝑗 can change at a time.

𝐴

𝐴𝑖

𝐵

𝐵𝑗

𝑥𝐴
1

𝑦1=𝖚[Φ𝑖(𝐴𝑖;𝑥𝐴
1 )]

𝑦1

Want to preserve 𝐵𝑗 below 𝑦1 = 𝖚 [Φ𝑖(𝐴𝑖; 𝑥𝐴
1 )]
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Full Strategy

Above outcome guessing Φ𝑖(𝐴𝑖) = 𝐴 ∧ Φ𝑗(𝐵𝑗) = 𝐵 we space out
witnesses 𝑥𝐴

𝑘 , 𝑥𝐵
𝑘 so only one of 𝐴𝑖, 𝐵𝑗 can change at a time.

𝐴

𝐴𝑖

𝐵

𝐵𝑗

𝑥𝐴
1

𝑦1=𝖚[Φ𝑖(𝐴𝑖;𝑥𝐴
1 )]

𝑦1

𝑥𝐵
1

Want to preserve 𝐵𝑗 below 𝑦1 = 𝖚 [Φ𝑖(𝐴𝑖; 𝑥𝐴
1 )]

Preserve 𝐵𝑗 on 𝖚 [Φ𝑗(𝐵; 𝑦1)] by picking 𝑥𝐵
1 > 𝖚 [Φ𝑗(𝐵; 𝑦1)]
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Full Strategy

Above outcome guessing Φ𝑖(𝐴𝑖) = 𝐴 ∧ Φ𝑗(𝐵𝑗) = 𝐵 we space out
witnesses 𝑥𝐴

𝑘 , 𝑥𝐵
𝑘 so only one of 𝐴𝑖, 𝐵𝑗 can change at a time.

𝐴

𝐴𝑖

𝐵

𝐵𝑗

𝑥𝐴
1

𝑦1=𝖚[Φ𝑖(𝐴𝑖;𝑥𝐴
1 )]

𝑦1

𝑥𝐵
1

𝑦2=𝖚[Φ𝑗(𝐵𝑗 ;𝑥𝐵
1 )]

Preserve 𝐵𝑗 on 𝖚 [Φ𝑗(𝐵; 𝑦1)] by picking 𝑥𝐵
1 > 𝖚 [Φ𝑗(𝐵; 𝑦1)]

Want to preserve 𝐴𝑗 below 𝑦2 = 𝖚 [Φ𝑗(𝐵𝑗 ; 𝑥𝐵
1 )]
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Full Strategy

Above outcome guessing Φ𝑖(𝐴𝑖) = 𝐴 ∧ Φ𝑗(𝐵𝑗) = 𝐵 we space out
witnesses 𝑥𝐴

𝑘 , 𝑥𝐵
𝑘 so only one of 𝐴𝑖, 𝐵𝑗 can change at a time.

𝐴

𝐴𝑖

𝐵

𝐵𝑗

𝑥𝐴
1

𝑦1=𝖚[Φ𝑖(𝐴𝑖;𝑥𝐴
1 )]

𝑦1

𝑥𝐵
1

𝑦2=𝖚[Φ𝑗(𝐵𝑗 ;𝑥𝐵
1 )]

𝑦2

𝑥𝐴
2

Want to preserve 𝐴𝑗 below 𝑦2 = 𝖚 [Φ𝑗(𝐵𝑗 ; 𝑥𝐵
1 )]

Preserve 𝐴𝑗 below 𝑦2 by picking 𝑥𝐴
2 > 𝖚 [Φ𝑖(𝐴; 𝑦2)]
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Full Strategy

Above outcome guessing Φ𝑖(𝐴𝑖) = 𝐴 ∧ Φ𝑗(𝐵𝑗) = 𝐵 we space out
witnesses 𝑥𝐴

𝑘 , 𝑥𝐵
𝑘 so only one of 𝐴𝑖, 𝐵𝑗 can change at a time.

𝐴

𝐴𝑖

𝐵

𝐵𝑗

𝑥𝐴
1

𝑦1=𝖚[Φ𝑖(𝐴𝑖;𝑥𝐴
1 )]

𝑦1

𝑥𝐵
1

𝑦2=𝖚[Φ𝑗(𝐵𝑗 ;𝑥𝐵
1 )]

𝑦2

𝑥𝐴
2

𝑦3

Preserve 𝐴𝑗 below 𝑦2 by picking 𝑥𝐴
2 > 𝖚 [Φ𝑖(𝐴; 𝑦2)]
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Full Strategy

Above outcome guessing Φ𝑖(𝐴𝑖) = 𝐴 ∧ Φ𝑗(𝐵𝑗) = 𝐵 we space out
witnesses 𝑥𝐴

𝑘 , 𝑥𝐵
𝑘 so only one of 𝐴𝑖, 𝐵𝑗 can change at a time.

𝐴

𝐴𝑖

𝐵

𝐵𝑗

𝑥𝐴
1

𝑦1=𝖚[Φ𝑖(𝐴𝑖;𝑥𝐴
1 )]

𝑦1

𝑥𝐵
1

𝑦2=𝖚[Φ𝑗(𝐵𝑗 ;𝑥𝐵
1 )]

𝑦2

𝑥𝐴
2

𝑦3

Suppose 𝑥𝐴
2 enters 𝐴.
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Full Strategy

Above outcome guessing Φ𝑖(𝐴𝑖) = 𝐴 ∧ Φ𝑗(𝐵𝑗) = 𝐵 we space out
witnesses 𝑥𝐴

𝑘 , 𝑥𝐵
𝑘 so only one of 𝐴𝑖, 𝐵𝑗 can change at a time.

𝐴

𝐴𝑖

𝐵

𝐵𝑗

𝑥𝐴
1

𝑦1=𝖚[Φ𝑖(𝐴𝑖;𝑥𝐴
1 )]

𝑦1

𝑥𝐵
1

𝑦2=𝖚[Φ𝑗(𝐵𝑗 ;𝑥𝐵
1 )]

𝑦2

𝑥𝐴
2

𝑦3

Suppose 𝑥𝐴
2 enters 𝐴. Forces 𝐴𝑖 to change between 𝑦2 and 𝑦3
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Full Strategy

Above outcome guessing Φ𝑖(𝐴𝑖) = 𝐴 ∧ Φ𝑗(𝐵𝑗) = 𝐵 we space out
witnesses 𝑥𝐴

𝑘 , 𝑥𝐵
𝑘 so only one of 𝐴𝑖, 𝐵𝑗 can change at a time.

𝐴

𝐴𝑖

𝐵

𝐵𝑗

𝑥𝐴
1

𝑦1=𝖚[Φ𝑖(𝐴𝑖;𝑥𝐴
1 )]

𝑦1

𝑥𝐵
1

𝑦2=𝖚[Φ𝑗(𝐵𝑗 ;𝑥𝐵
1 )]

𝑦2

𝑥𝐴
2

𝑦3

Suppose 𝑥𝐴
2 enters 𝐴. Forces 𝐴𝑖 to change between 𝑦2 and 𝑦3

There may also be changes above purple region but none below and
there must be a change in it.
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Full Strategy

Above outcome guessing Φ𝑖(𝐴𝑖) = 𝐴 ∧ Φ𝑗(𝐵𝑗) = 𝐵 we space out
witnesses 𝑥𝐴

𝑘 , 𝑥𝐵
𝑘 so only one of 𝐴𝑖, 𝐵𝑗 can change at a time.

𝐴

𝐴𝑖

𝐵

𝐵𝑗

𝑥𝐴
1

𝑦1=𝖚[Φ𝑖(𝐴𝑖;𝑥𝐴
1 )]

𝑦1

𝑥𝐵
1

𝑦2=𝖚[Φ𝑗(𝐵𝑗 ;𝑥𝐵
1 )]

𝑦2

𝑥𝐴
2

𝑦3

Suppose 𝑥𝐴
2 enters 𝐴. Forces 𝐴𝑖 to change between 𝑦2 and 𝑦3

Suppose 𝑥𝐵
1 enters 𝐵. Forces 𝐵𝑗 to change between 𝑦1 and 𝑦2
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Full Strategy

Above outcome guessing Φ𝑖(𝐴𝑖) = 𝐴 ∧ Φ𝑗(𝐵𝑗) = 𝐵 we space out
witnesses 𝑥𝐴

𝑘 , 𝑥𝐵
𝑘 so only one of 𝐴𝑖, 𝐵𝑗 can change at a time.

𝐴

𝐴𝑖

𝐵

𝐵𝑗

𝑥𝐴
1

𝑦1=𝖚[Φ𝑖(𝐴𝑖;𝑥𝐴
1 )]

𝑦1

𝑥𝐵
1

𝑦2=𝖚[Φ𝑗(𝐵𝑗 ;𝑥𝐵
1 )]

𝑦2

𝑥𝐴
2

𝑦3

Suppose 𝑥𝐵
1 enters 𝐵. Forces 𝐵𝑗 to change between 𝑦1 and 𝑦2
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Full Strategy

Above outcome guessing Φ𝑖(𝐴𝑖) = 𝐴 ∧ Φ𝑗(𝐵𝑗) = 𝐵 we space out
witnesses 𝑥𝐴

𝑘 , 𝑥𝐵
𝑘 so only one of 𝐴𝑖, 𝐵𝑗 can change at a time.

𝐴

𝐴𝑖

𝐵

𝐵𝑗

𝑥𝐴
1

𝑦1=𝖚[Φ𝑖(𝐴𝑖;𝑥𝐴
1 )]

𝑦1

𝑥𝐵
1

𝑦2=𝖚[Φ𝑗(𝐵𝑗 ;𝑥𝐵
1 )]

𝑦2

𝑥𝐴
2

𝑦3

Suppose 𝑥𝐵
1 enters 𝐵. Forces 𝐵𝑗 to change between 𝑦1 and 𝑦2

Suppose 𝑥𝐴
1 enters 𝐴. Forces 𝐴𝑖 to change below 𝑦1.
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Full Strategy

Above outcome guessing Φ𝑖(𝐴𝑖) = 𝐴 ∧ Φ𝑗(𝐵𝑗) = 𝐵 we space out
witnesses 𝑥𝐴

𝑘 , 𝑥𝐵
𝑘 so only one of 𝐴𝑖, 𝐵𝑗 can change at a time.

𝐴

𝐴𝑖

𝐵

𝐵𝑗

𝑥𝐴
1

𝑦1=𝖚[Φ𝑖(𝐴𝑖;𝑥𝐴
1 )]

𝑦1

𝑥𝐵
1

𝑦2=𝖚[Φ𝑗(𝐵𝑗 ;𝑥𝐵
1 )]

𝑦2

𝑥𝐴
2

𝑦3

Suppose 𝑥𝐵
1 enters 𝐵. Forces 𝐵𝑗 to change between 𝑦1 and 𝑦2

Suppose 𝑥𝐴
1 enters 𝐴. Forces 𝐴𝑖 to change below 𝑦1.
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Full Strategy

Above outcome guessing Φ𝑖(𝐴𝑖) = 𝐴 ∧ Φ𝑗(𝐵𝑗) = 𝐵 we space out
witnesses 𝑥𝐴

𝑘 , 𝑥𝐵
𝑘 so only one of 𝐴𝑖, 𝐵𝑗 can change at a time.

𝐴

𝐴𝑖

𝐵

𝐵𝑗

𝑥𝐴
1

𝑦1=𝖚[Φ𝑖(𝐴𝑖;𝑥𝐴
1 )]

𝑦1

𝑥𝐵
1

𝑦2=𝖚[Φ𝑗(𝐵𝑗 ;𝑥𝐵
1 )]

𝑦2

𝑥𝐴
2

𝑦3

Note we never (below totality guess) allow both 𝐴𝑖 and 𝐵𝑗 to change
at same location. So 𝐴𝑖 Δ 𝐵𝑗 never returns to prior value.
When 𝑥𝑍

𝑘 enters𝑍 we pick new values for 𝑥𝑌
𝑚 with 𝑥𝑌

𝑚 > 𝑥𝑍
𝑘
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Extending the Result

Theorem
There is a low, minimal pair of r.e. sets 𝐴 and 𝐵 such that for any 𝐴
and 𝐵 with 𝐴 ≡𝐓 𝐴 and 𝐵 ≡𝐓 𝐵, we have 𝐴 Δ 𝐵 ≡𝐓 𝐴 ⊕ 𝐵.

That is we also ensure: 𝐴′ ≡𝐓 𝐵′ ≡𝐓 𝟘′ and
(∀𝑋) (𝑋 ≤𝐓 𝐴 ∧ 𝑋 ≤𝐓 𝐵 ⟹ 𝑋 ≤𝐓 𝟘)

Note that the usual minimal pair construction works by letting only
one side (𝐴 or 𝐵) change at a time so is naturally compatible.
Lowness only imposes finitary restraint so doesn’t interfere.
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Outline

1 Motivation

2 Incompatible Δ degrees in ℛ

3 Condition 𝐶

4 Open Questions
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Condition 𝐶

Remember we started by looking at condition 𝐶:

(𝐶) (𝐜 ∨ 𝐚 ≥ 𝐛) ∧ (𝐜 ∨ 𝐛 > 𝐚) ⟹ 𝐜 ≮ 𝐚 ∨ 𝐛

But our construction above doesn’t guarantee we produce 𝐴, 𝐵 that
satisfy 𝐶.
We only proved that 𝐴𝑖 Δ 𝐵𝑗 ≡𝐓 𝐴 ⊕ 𝐵 and thus isn’t such a degree
𝐜.

Might be possible way to build such a degree 𝐜 which isn’t of the form
𝐴𝑖 Δ 𝐵𝑗
So we haven’t even shown that 𝐶 is satisfied.

Can we guarantee condition 𝐶 is satisfied with incompatible
r.e. degrees?
If 𝐴, 𝐵 are incompatible r.e. degrees with well-defined symetric
difference must 𝐶 be satisfied?
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Condition 𝐶 is satisfiable

Theorem
There are (Turing) incomparable r.e. sets 𝐴 and 𝐵 such that for any
𝐶 ≤𝐓 𝐴 ⊕ 𝐵 with 𝐴 ⊕ 𝐶 ≥𝐓 𝐵 and 𝐵 ⊕ 𝐶 ≥𝐓 𝐴, we have 𝐶 ≡𝐓 𝐴 ⊕ 𝐵.

Requirements

Φ𝑒(𝐴) ≠ 𝐵𝒫 𝐴
𝑒 :

Φ𝑒(𝐵) ≠ 𝐴𝒫 𝐵
𝑒 :

(Φ𝑖(𝐴 ⊕ 𝐶𝑘) = 𝐵 ∧ Φ𝑗(𝐵 ⊕ 𝐶𝑘) = 𝐴) ⟹ Γ𝑖,𝑗,𝑘(𝐶𝑘) = 𝐴 ⊕ 𝐵𝒮𝑖,𝑗,𝑘:

Where 𝐶𝑘 = Φ𝑘(𝐴 ⊕ 𝐵)

We meet 𝒫 𝐴
𝑒 , 𝒫 𝐵

𝑒 as before.
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Meeting 𝒮𝑖,𝑗,𝑘

Requirement

𝒮𝑖,𝑗,𝑘: (Φ𝑖(𝐴 ⊕ 𝐶𝑘) = 𝐵 ∧ Φ𝑗(𝐵 ⊕ 𝐶𝑘) = 𝐴) ⟹ Γ𝑖,𝑗,𝑘(𝐶𝑘) = 𝐴 ⊕ 𝐵

Think of 𝐶𝑘 as playing the role of 𝐴𝑖 Δ 𝐵𝑗 .
If 𝐵 is held fixed then a change in 𝐴 forces a change in 𝐶𝑘 (likewise
for 𝐴, 𝐵 switched) .
Danger is that later change in 𝐵 allows 𝐶𝑘 to return to prior state
(likewise for 𝐴).
We use same spacing-out trick to ensure that changes to 𝐶𝑘 as a
result of an enumeration into 𝐴 or 𝐵 can’t cancel each other out.

This ensures that an initial segment of 𝐶𝑘 uniquely determines initial
segment of 𝐴, 𝐵 (assuming the antecedant is satisfied).
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Condition 𝐶 isn’t necessary

Theorem
There are (Turing) incomparable r.e. sets 𝐴 and 𝐵 with a well-defined
symetric difference and a set 𝐶 <𝐓 𝐴 ⊕ 𝐵 with 𝐴 ⊕ 𝐶 ≥𝐓 𝐵, 𝐵 ⊕ 𝐶 ≥𝐓 𝐴.

We build 𝐴, 𝐵, 𝐶 and computations Ξ(𝐴 ⊕ 𝐵) = 𝐶, Υ1(𝐴 ⊕ 𝐶) = 𝐵, and
Υ2(𝐵 ⊕ 𝐶) = 𝐴 to satisfy:

Requirements

Φ𝑒(𝐴) ≠ 𝐵𝒫 𝐴
𝑒 :

Φ𝑒(𝐵) ≠ 𝐴𝒫 𝐵
𝑒 :

Φ𝑖(𝐴𝑖) = 𝐴 ∧ Φ𝑗(𝐵𝑗) = 𝐵 ⟹ Γ𝑖,𝑗(𝐴𝑖 Δ 𝐵𝑗) = 𝐴 ⊕ 𝐵ℛ𝑖,𝑗 :

Φ𝑖(𝐶) ≠ 𝐴 × 𝐵𝒬𝑒:

(Obviously, 𝐴 × 𝐵 ≡𝐓 𝐴 ⊕ 𝐵)
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Approach

Use same strategy to meet 𝒫 𝑋
𝑒 . But how can we meet ℛ𝑖,𝑗 without

also meeting 𝒮𝑖,𝑗,𝑘 (which ensured no such 𝐶 existed)?
Goal: make enumerations into 𝐴, 𝐵 that ensure we see (and never
reverse) a change in 𝐴𝑖 Δ 𝐵𝑗 but don’t force us to change 𝐶.
Note, computations using Ξ, Υ𝑘 (those 𝒮𝑖,𝑗,𝑘 breaks) depend on both
𝐴, 𝐵 while computations in ℛ𝑖,𝑗 between 𝐴, 𝐴𝑖 and 𝐵, 𝐵𝑗 only involve
one of 𝐴, 𝐵.
Idea: By freezing 𝐴 and enumerating elements into 𝐵 we can drive
up use of Ξ(𝐴 ⊕ 𝐵) and Υ2(𝐵 ⊕ 𝐶) without affecting use of Φ𝑖(𝐴)
and vice versa.
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Plan

We find a pair 𝑥𝐴
𝑘 , 𝑥𝐵

𝑘 for enumeration into 𝐴 × 𝐵 such that:
Enumeration into 𝐴 × 𝐵 forces 𝐴𝑖 to change below any change in 𝐵𝑗
ensuring change in 𝐴𝑖 Δ 𝐵𝑗 (to meet ℛ𝑖,𝑗).
But 𝐶 is left unchanged by enumeration.
We find pair by reserving canidate for one side then enumerating
elements into other side to push up uses and then vice versa.

Hold 𝑥𝐴
𝑘 , 𝑥𝐵

𝑘 out of 𝐴 × 𝐵 until we see Φ𝑖(𝐶; 𝑥𝐴
𝑘 , 𝑥𝐵

𝑘 )↓ = 0 to meet 𝒬𝑖.

Interleaved with these pairs we have the usual enumerations to meet
𝒫 𝑋

𝑒 (keeping all canidates sufficently spaced out to meet ℛ𝑖,𝑗)
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Outline

1 Motivation

2 Incompatible Δ degrees in ℛ

3 Condition 𝐶

4 Open Questions
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Open Questions

Question
For what r.e. degrees 𝐚 does there exist an r.e. degree 𝐛 with 𝐚 Δ 𝐛
well-defined.

Note that all our constructions have been compatible with the
minimal pair construction.
Raises tantalizing possibility that the class of r.e. degrees above is
just the class of promptly simple degrees, aka, those part of a minimal
pair.
Possible easy disproof by tracking down the simple (compatible)
examples cited up top and checking if they allow for non-promptly
simple instaces.
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More Open Questions

Question
For what r.e. degrees 𝐚 does there exist an incompatible r.e. degree 𝐛 with
𝐚 Δ 𝐛 well-defined.

Maybe all examples are promptly simple except when 𝐚 < 𝐛 (e.g.
maybe you can stretch 𝐛 up).
Also would be interesting to ask the above questions but allow 𝐛 to
be any degree.

Perhaps one would want to start by looking at what r.e. degrees have
been shown to have a strong minimal cover.

Question
Does every r.e. degree whose symetric difference is well-defined with
respect to some degree have a well-defined symetric difference with respect
to an r.e. degree? What if we restrict to incompatible degrees?
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Other Directions

Can one give a condition on 𝐚, 𝐛 which guarantees their symetric
difference is well-defined. What about prevents?

One might try and find a class of degrees such that any pair in it has
a well-defined symetric difference.

Couldn’t be very nice thanks to counterexample produced using 3
independent degrees.

Do all examples of degrees with a well-defined symetric difference in
some sense look like either the diamond or strong minimal cover cases
or the r.e. examples?
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