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Motivation

@ Combinatorial operations are almost never well-defined on Turing
degrees

e For instance, given degrees a,b we can choose representatives A, B so
that ANB=@ orsothat AnNBe€avb
@ So the operation N is never well-defined on (non-trivial) Turing
degrees. But what about other basic set-theoretic operations such as
A (symetric difference)?
@ In this talk we'll investigate the class of degrees for which A is
well-defined:

e That is, the class of degrees a, b, ¢ such that if A € a, B € b then
AABEc.

e Note that (by choosing A C {2x |x € w},BC {2x+ 1 | x € w}) we
must have c=a Vv b.
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Easy Failure

Proposition

If X,Y,Z are independent Turing degrees then A= X @Y & @ and
B=X® 3 ® Z are independent Turing degrees without a well-defined
symetric difference.

Where the set S of Turing degrees is independent if
(VA € 5) (A £ S\ (4}).

Just definition chasing:

o Notethatt AAB=XAX)BYAD)DQBAZ)=0DY D Z.
@ SOAAB#r X hence AABZr A®@B=; (AD Q) A (D B).
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Easy Success

Proposition

If (for all ¢)

(C) (cva>b)A(cvb>a) = c£avb
and a # b then a A b is well-defined.

@ So there is no degree ¢ < aVv b with:

avb b=avb

a/f\b ‘X

@ But AAB e cforsomesuchcso AABeavb
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In 9

Proposition

There are degrees a,b for which a A b is well-defined.

@ Let a be a minimal degree and b be a strong minimal cover of a (any

degree strictly below b is below a).

@ These degrees trivially satisfy C ;
b=avb

5

@ As any ¢ < b must actually satisfy ¢ < a

What about incompatible degrees?
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Incompatible degrees in &

Proposition

There are incompatible degrees a,b for which a A b is well-defined.

@ It is possible to embed the diamond as an initial segment of the
Turing degrees[Sa63]

avb
VRN
a b
NS
0
This satisfies (C). Remember:

(C) (cva>b)A(cvb>a) = c£avh
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@ So what about working in the r.e. degrees (%#)?

used above.

@ Density means we can’t hope to build the strong minimal covers we

both a and b up to aVv b.

@ But we can still satisfy C if none of the degrees below a v b can join
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Compatible Degrees in &

Proposition

There are compatible degrees a,b in & for which a A b is well-defined.

@ There is a pair of recursively enumerable degrees a < b so that there
is no Turing degree ¢ < b such that av ¢ =b [SS89, Co89].

b=avb
| X
a
c

@ What about incompatible r.e. degrees?

o We'll investigate this case in the next section.
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Incompatible degrees in &

Theorem

There are (Tur/ng) /ncomparable r.e. sets A and B such that for any A
and B WIthA_TA andB_TB we haveAAB_TAGBB

Requirements

PA D, (A)#B

2B ®,(B) £ A
Ry ©(A)=are,(B)=B = T,;AAaB)=A0B

Where:

P A if @y < X, W1
b @, (X,;z) otherwise

Xi(2) = lim X, ()
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Avoiding Index Profusion

Suppose there were e, e’, k, k" with @,/ (A\e) =A,®Q <§k> = B and
A,AB, %3 A® B.

o Define i (likewise j replacing e, e’ with k, k") so that:
1-X@0) ifn=0
D,(X; if 0AX(0)= A0
O,(X:m) = (X;5n) l n# 0) = A0)
D, (Y;n) if n#0,X(0)# AQ0),A
V) (Y(n)=X(n+1))
@ Then ;1\,-, §j would witness failure with d),.<;fi) = A,d)j(ﬁj> = B.
e As Xi,ﬁj agree with ;fe,]/i\k except possibly at 0.

@ Can use this anytime we have requirements on sets of same degree to
avoid index profusion.

Peter M. Gerdes Computability and the Symmetric Difference ! NERDS Fall 2021 12/30



Meeting P4, P8

Requirement

PA D (A)# B

e

@ We reserve some canidate (ball) x2 which we keep out of B unless we
see <I>e(A;xe) =0.

@ We place requirements on (downward growing) Hg tree and let
possible canidates trickle down.

@ Positive requirements grab and hold passing ball when they need a
witness otherwise let canidates flow past to lower priority
requirements.

e This allows higher priority nodes to force canidates for lower priority
nodes to be spaced out as needed.

o Note that we throw away all balls when truepath moves to their left.
This ensures that anytime a ball enters A or B all larger balls are
discarted.
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Framework for meeting %, ;

Requirement

o (4)=4no,(B)=B = T,AAB)=a0B

R, i

i,j*

@ We conceptualize building I} ; via enumeration of axioms (always with
large use).

@ R;; works to build I ; at stages where length of agreement for
¢)i<2i> =AA <Dj(§j) = B increases.

o If x enters A; @ B, we enumerate an axiom putting x into
I; ;(A; A B)) for all inputs.

@ Enough to show that if x € A @ B then we enumerate axiom saying
so (i.e T;;(A; A B;;x =0))

Imagine we could hold ﬁj fixed. How could we meet %, ;7
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Hypothetically holding ﬁj fixed

If l/g\j was fixed then:
o If we see (I)i’s(gi’s;x> =0 (so x ¢ A if computation valid) then
enumerate axiom saying F,-’j(;f[’s A ﬁj,s;2x) =0 (e.g. guessing
A (x) =0).
o If later x enters A then A; and thus 4; A §j must change below use
(large at s ) cancelling axiom.
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Hypothetically holding ﬁj fixed

If l/g\j was fixed then:
o If we see (I)i’s(gi’s;x> =0 (so x ¢ A if computation valid) then

enumerate axiom saying F,-’j(;f[’s A ﬁj,s;2x) =0 (e.g. guessing
A (x) =0).

o If later x enters A then A\i and thus f/f,. A IA?j must change below use
(large at s ) cancelling axiom.

DANGER! (As B isn't fixed)
e Suppose at s’ > s, % enters A, (restoring agreement between
(Di’sl <A\i,s/> and As’)

o But then at s” > s', % enters B; so A; ;» A B; ;n agrees with

A; 5 A B s on earlier use.
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Full Strategy

@ Above outcome guessing d>l-<2,-> =AA ®j<§j> = B we space out

witnesses x?,xf so only one of A;, B; can change at a time.

A o— >
XA
S

A e

=y

J
@ Reserve xf to meet 9’{‘

o If x’f enters A then A\j changes below y; = u [CI)i<f/1\~'xA>]
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Full Strategy

@ Above outcome guessing d>l-<2,-> =AA ®j<§j> = B we space out

A B A~ Py .
> Xy so only one of A;, B; can change at a time.

A o— >
XA
S

A e

witnesses x

Il

| >

Y1

>
°

e Want to preserve E\J- below y; =u [CDI'(X;';X?)]
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Full Strategy

@ Above outcome guessing d>l-<2,-> =AA ®j<§j> = B we space out

A B A~ Py .
> Xy so only one of A;, B; can change at a time.

A o— >
A
T\
A\ L4 ¥ >
e
Be /
yxl "

witnesses x

>
°

@ Want to preserve E\J- below y; =u [Cbl(g-'xf)]
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Full Strategy

@ Above outcome guessing d>l-<2,-> =AA ®j<§j> = B we space out

witnesses x?,xf so only one of A;, B; can change at a time.

A o—
LA

F\\

A\ T >

el i)

i yTl
e Want to preserve E\J- below y; =u [CDI'(X;';X?)]

@ Preserve §j onu [(I)j(B;yl)] by picking xf >u [@I(B;yl)]
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Full Strategy
@ Above outcome guessing d>l-<2,-> =AA ®j<§j> = B we space out

witnesses x?,xf so only one of A;, B; can change at a time.

A o—i -
XA
S

2 .

. T
1
yi=u [CD,- A,-;xf‘ )]

Il

Y

B

=%

B;

T T

! n=uloy(Ba] )]
@ Preserve ﬁj onu [(Dj(B;yl)] by picking xf >u [(I)j(B;yl)]

e Want to preserve A\j below y, =u [dDj <I/3\j;xf>]

Peter M. Gerdes Computability and the Symmetric Difference ! NERDS Fall 2021 16 /30



Full Strategy

@ Above outcome guessing d>l-<2->

A B

witnesses x;’, x,/ so only one of A,

A o— ‘ % -
x;\ / x’zq

N

A @ f >

A
IA? can change at a time.

=
]
Y

@ Want to preserve A\j below y, = u [CI>j<Aj;xf>
u

@ Preserve A\j below y, by picking x‘24 >
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Full Strategy

@ Above outcome guessing d>l-<2,-> =AA ®j<§j> = B we space out

A B

witnesses x;’, x,’ so only one of A;, B; can change at a time.

k
Ae 1 I 1 >
A\i [ 4 1 T >
= u[‘bl :Xf‘)] 2 3
Be | -
<7
é\l L4 T T >
B o= (B )]

@ Preserve A; below y, by picking x’24 >u [CI),-(A;YQ)]
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@ Above outcome guessing <I>(;1\) =ANA <I>~(A~) = B we space out

witnesses x,‘:, B so only one of A,,B can change at a time.

A —

/\, ;X?)] 2 Y3

<
=
Il
&
&
=

@ Suppose x‘z‘1 enters A.

«AO> A« F>r «=)r « =)

[
S
o
2




Full Strategy

@ Above outcome guessing dDI-(g,-) =AA ®j<§j> = B we space out

witnesses x?,xf so only one of A;, B; can change at a time.

Ae f & >
/
P

>
ket
7k

~ y
y1=“[‘1>i i:Xf)] :
B @ 1 Il >
xy
~
Bj [ f | .
1 5
yy=u qu(Bj x?)]

@ Suppose x’24 enters A. Forces ;fi to change between y, and y;
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Full Strategy

@ Above outcome guessing d>l-<2,-> =AA ®j<§j> = B we space out

witnesses x?,xf so only one of A;, B; can change at a time.

Ae— 1 h -
A\ e 1 >
2 Y3

=
]
Y

@ Suppose x’24 enters A. Forces ;fi to change between y, and y;

@ There may also be changes above purple region but none below and
there must be a change in it.
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Full Strategy

@ Above outcome guessing dDI-(g,-) =AA ®j<§j> = B we space out

witnesses x?,xf so only one of A;, B; can change at a time.

A o— — -
A [ 4 T | >
»2 y3

>

=
]
Y

T
Y1 A
o= (B )]

@ Suppose x’24 enters A. Forces ;fi to change between y, and y;

@ Suppose xf; enters B. Forces ﬁj to change between y; and y,
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Full Strategy

@ Above outcome guessing dDI-(g,-) =AA ®j<§j> = B we space out

witnesses x?,xf so only one of A;, B; can change at a time.

SN N

2

>

b
p

= u[d) Apix

”/ ﬁ

o= (B )]

=y

@ Suppose x2 enters B. Forces B, to change between y, and y
P 1 j I 2
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Full Strategy

@ Above outcome guessing dDI-(g,-) =AA ®j<§j> = B we space out

witnesses x?,xf so only one of A;, B; can change at a time.

o —

= u[d) Apix

)

@ Suppose xf enters B. Forces ﬁj to change between y; and y,

@ Suppose x’f enters A. Forces Xi to change below y,.
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Full Strategy

@ Above outcome guessing dDI-(gi) =AA ®j<§j> = B we space out

witnesses x?,xf so only one of A;, B; can change at a time.

SN N

= u[d) Apix

&
)

@ Suppose xf enters B. Forces ﬁj to change between y; and y,

@ Suppose x’f enters A. Forces Xi to change below y,.
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Full Strategy

@ Above outcome guessing @(2) =AA ®j<§j> = B we space out

witnesses x?,xB so only one of A , B; can change at a time.

— —

2

= u[d) Apix

o

@ Note we never (below totality guess) allow both Ei and ﬁj to change

~ Py
at same location. So A; A B; never returns to prior value.

@ When kaentersZ we pick new values for x! with x¥ > ka
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Extending the Result

There is a low, minimal pair of r.e. sets A and B such that for any A
and B with A=y A and B =y B, we have AA B=y A® B.

That is we also ensure: A" =p B’ = 0" and
(VX)(X < AANX <y B = X <7 0)

@ Note that the usual minimal pair construction works by letting only
one side (A or B) change at a time so is naturally compatible.

@ Lowness only imposes finitary restraint so doesn't interfere.
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Condition C

@ Remember we started by looking at condition C:

(C) (cva>b)A(cvb>a) = c£avb

@ But our construction above doesn't guarantee we produce A, B that
satisfy C.

@ We only proved that 2,- A ﬁj =r A @ B and thus isn’t such a degree
C.
o Might be possible way to build such a degree ¢ which isn’t of the form
A, A B,
e So we haven't even shown that C is satisfied.

@ Can we guarantee condition C is satisfied with incompatible
r.e. degrees?

o If A, B are incompatible r.e. degrees with well-defined symetric
difference must C be satisfied?
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Condition C is satisfiable

There are (Turing) incomparable r.e. sets A and B such that for any
C<rA®BwithA®C>1 Band B@C >t A, we have C =p A @ B.

Requirements

2L ®,(A)#B
2B ©,B)#A
Siiu (@(ADC)=BA®(BOC,)=4) = I,,,(CO=ADB

Where C, = ®,(A @ B)

@ We meet %A, 9"63 as before.
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Meeting S ; «

Requirement

S (P(A®C)=BADQ(BDC,)=A) = I,;,(C)=A®B

e Think of C, as playing the role of A\,- A ﬁj.

e If B is held fixed then a change in A forces a change in C; (likewise
for A, B switched) .

@ Danger is that later change in B allows C; to return to prior state
(likewise for A).

@ We use same spacing-out trick to ensure that changes to C, as a
result of an enumeration into A or B can't cancel each other out.

e This ensures that an initial segment of C, uniquely determines initial
segment of A, B (assuming the antecedant is satisfied).
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Condition C isn't necessary

There are (Turing) incomparable r.e. sets A and B with a well-defined
symetric difference and a set C <1 A@® B with A® C >t B,B® C >t A.

We build A, B,C and computations (A @ B) =C, Y;(A&® C) = B, and
Y,(B @& C) = A to satisfy:

Requirements

PA. D,(A) # B

PE. ®,(B) £ A

- o,(4)=4r0,(B)=B = ,,AaB)=108
®,(C)# AXB

(Obviously, Ax B=p A® B)
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Approach

o Use same strategy to meet 22X But how can we meet R; j without
also meeting &, ; , (which ensured no such C existed)?

e Goal: make enumerations into A, B that ensure we see (and never
reverse) a change in A; A B; but don't force us to change C.

e Note, computations using E,Y, (those S, ; , breaks) depend on both

A, B while computations in %i’j between A, X,» and B,B\j only involve
one of A, B.

o ldea: By freezing A and enumerating elements into B we can drive
up use of Z(A @ B) and Y,(B @ C) without affecting use of ®;(A)
and vice versa.
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Plan

o We find a pair x,f,xf for enumeration into A X B such that:

e Enumeration into A X B forces Xi to change below any change in ﬁj
ensuring change in A, A I§j (to meet %, ;).

e But C is left unchanged by enumeration.

e We find pair by reserving canidate for one side then enumerating
elements into other side to push up uses and then vice versa.

e Hold x,’?,xf out of A X B until we see (I)i(C;x]?,xf)l = 0 to meet G;.

@ Interleaved with these pairs we have the usual enumerations to meet
PX (keeping all canidates sufficently spaced out to meet Ri ;)
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Open Questions

For what r.e. degrees a does there exist an r.e. degree b with a Ab
well-defined.

@ Note that all our constructions have been compatible with the
minimal pair construction.

o Raises tantalizing possibility that the class of r.e. degrees above is
just the class of promptly simple degrees, aka, those part of a minimal
pair.

@ Possible easy disproof by tracking down the simple (compatible)
examples cited up top and checking if they allow for non-promptly
simple instaces.
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More Open Questions

For what r.e. degrees a does there exist an incompatible r.e. degree b with
a A b well-defined.

e Maybe all examples are promptly simple except when a < b (e.g.
maybe you can stretch b up).

@ Also would be interesting to ask the above questions but allow b to
be any degree.

e Perhaps one would want to start by looking at what r.e. degrees have
been shown to have a strong minimal cover.

Does every r.e. degree whose symetric difference is well-defined with
respect to some degree have a well-defined symetric difference with respect
to an r.e. degree? What if we restrict to incompatible degrees?

[} [ =
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Other Directions

@ Can one give a condition on a,b which guarantees their symetric
difference is well-defined. What about prevents?

@ One might try and find a class of degrees such that any pair in it has
a well-defined symetric difference.

e Couldn't be very nice thanks to counterexample produced using 3
independent degrees.

@ Do all examples of degrees with a well-defined symetric difference in
some sense look like either the diamond or strong minimal cover cases
or the r.e. examples?
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